0
Research Papers

Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics

[+] Author and Article Information
Maoyi Zhang

State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China;
School of Engineering Science,
University of Chinese Academy of Sciences,
Beijing 100049, China

Hao Liu

State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China;
Institute of Solid Mechanics,
Beihang University (BUAA),
Beijing 100191, China

Peng Cao

Department of Hydraulic Engineering,
Tsinghua University,
Beijing 100084, China

Bin Chen, Yuli Chen, Bing Pan

Institute of Solid Mechanics,
Beihang University (BUAA),
Beijing 100191, China

Jianqiao Hu

State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China

Jonathan A. Fan

Department of Electrical Engineering,
Stanford University,
Stanford, CA 94305

Rui Li

State Key Laboratory of Structural Analysis for
Industrial Equipment,
Department of Engineering Mechanics,
International Research Center for
Computational Mechanics,
Dalian University of Technology,
Dalian 116024, China
e-mail: ruili@dlut.edu.cn

Lijuan Zhang

State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China
e-mail: zhanglijuan@imech.ac.cn

Yewang Su

State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China;
School of Engineering Science,
University of Chinese Academy of Sciences,
Beijing 100049, China;
State Key Laboratory of Structural Analysis for
Industrial Equipment,
Department of Engineering Mechanics,
International Research Center for
Computational Mechanics,
Dalian University of Technology,
Dalian 116024, China;
State Key Laboratory of Digital Manufacturing
Equipment and Technology,
Huazhong University of
Science and Technology,
Wuhan 430074, China
e-mail: yewangsu@imech.ac.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received August 24, 2017; final manuscript received October 7, 2017; published online October 26, 2017. Assoc. Editor: Harold S. Park.

J. Appl. Mech 84(12), 121010 (Oct 26, 2017) (10 pages) Paper No: JAM-17-1460; doi: 10.1115/1.4038173 History: Received August 24, 2017; Revised October 07, 2017

Stretchable electronics based on inorganic materials are an innovative technology with potential applications for many emerging electronic devices, due to their combination of stretchable mechanics and high electronic performance. The compliant elastomeric substrate, on which the brittle electronic components are mounted, plays a key role in achieving stretchability. However, conventional elastomeric substrates can undergo excessive mechanical deformation, which can lead to active component failure. Here, we introduce a simple and novel strategy to produce failure-resistant stretchable electronic platforms by bonding a thin film of stiff material, patterned into a serpentine network layout, to the elastomeric substrate. No prestraining of the substrate is required, and these systems offer sharp bilinear mechanical behavior and high ratio of tangent-to-elastic moduli. We perform comprehensive theoretical, numerical, and experimental studies on the nonbuckling-based prestrain-free design, and we analyze the key parameters impacting the mechanical behavior of a strain-limiting substrate. As a device-level demonstration, we experimentally fabricate and characterize skin-mountable stretchable copper (Cu) electrodes for electrophysiological monitoring. This study paves the way to high performance stretchable electronics with failure-resistant designs.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kim, D.-H. , Ahn, J.-H. , Choi, W. M. , Kim, H.-S. , Kim, T.-H. , Song, J. , Huang, Y. Y. , Liu, Z. , Lu, C. , and Rogers, J. A. , 2008, “ Stretchable and Foldable Silicon Integrated Circuits,” Science, 320(5875), pp. 507–511. [CrossRef] [PubMed]
Li, R. , Li, M. , Su, Y. , Song, J. , and Ni, X. , 2013, “ An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics,” Soft Matter, 9(35), pp. 8476–8482. [CrossRef]
Ko, H. C. , Stoykovich, M. P. , Song, J. , Malyarchuk, V. , Choi, W. M. , Yu, C.-J. , Geddes , J. B., III , Xiao, J. , Wang, S. , Huang, Y. , and Rogers, J. A. , 2008, “ A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454(7205), pp. 748–753. [CrossRef] [PubMed]
Song, Y. M. , Xie, Y. , Malyarchuk, V. , Xiao, J. , Jung, I. , Choi, K.-J. , Liu, Z. , Park, H. , Lu, C. , Kim, R.-H. , Li, R. , Crozier, K. B. , Huang, Y. , and Rogers, J. A. , 2013, “ Digital Cameras With Designs Inspired by the Arthropod Eye,” Nature, 497(7447), pp. 95–99. [CrossRef] [PubMed]
Kim, D.-H. , Lu, N. , Ma, R. , Kim, Y.-S. , Kim, R.-H. , Wang, S. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T.-I. , Chowdhury, R. , Ying, M. , Xu, L. , Li, M. , Chung, H.-J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y.-W. , Omenetto, F. G. , Huang, Y. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Ying, M. , Bonifas, A. P. , Lu, N. , Su, Y. , Li, R. , Cheng, H. , Ameen, A. , Huang, Y. , and Rogers, J. A. , 2012, “ Silicon Nanomembranes for Fingertip Electronics,” Nanotechnol., 23(34), p. 344004. [CrossRef]
Su, Y. , Li, R. , Cheng, H. , Ying, M. , Bonifas, A. P. , Hwang, K.-C. , Rogers, J. A. , and Huang, Y. , 2013, “ Mechanics of Finger-Tip Electronics,” J. Appl. Phys., 114(16), p. 164511. [CrossRef] [PubMed]
Hwang, S.-W. , Tao, H. , Kim, D.-H. , Cheng, H. , Song, J.-K. , Rill, E. , Brenckle, M. A. , Panilaitis, B. , Won, S. M. , Kim, Y.-S. , Song, Y. M. , Yu, K. J. , Ameen, A. , Li, R. , Su, Y. , Yang, M. , Kaplan, D. L. , Zakin, M. R. , Slepian, M. J. , Huang, Y. , Omenetto, F. G. , and Rogers, J. A. , 2012, “ A Physically Transient Form of Silicon Electronics,” Science, 337(6102), pp. 1640–1644. [CrossRef] [PubMed]
Li, R. , Cheng, H. , Su, Y. , Hwang, S.-W. , Yin, L. , Tao, H. , Brenckle, M. A. , Kim, D.-H. , Omenetto, F. G. , Rogers, J. A. , and Huang, Y. , 2013, “ An Analytical Model of Reactive Diffusion for Transient Electronics,” Adv. Funct. Mater., 23(24), pp. 3106–3114. [CrossRef]
Xu, S. , Zhang, Y. , Cho, J. , Lee, J. , Huang, X. , Jia, L. , Fan, J. A. , Su, Y. , Su, J. , Zhang, H. , Cheng, H. , Lu, B. , Yu, C. , Chuang, C. , Kim, T.-I. , Song, T. , Shigeta, K. , Kang, S. , Dagdeviren, C. , Petrov, I. , Braun, P. V. , Huang, Y. , Paik, U. , and Rogers, J. A. , 2013, “ Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems,” Nat. Commun., 4, p. 1543. [CrossRef] [PubMed]
Dagdeviren, C. , Yang, B. D. , Su, Y. , Tran, P. L. , Joe, P. , Anderson, E. , Xia, J. , Doraiswamy, V. , Dehdashti, B. , Feng, X. , Lu, B. , Poston, R. , Khalpey, Z. , Ghaffari, R. , Huang, Y. , Slepian, M. J. , and Rogers, J. A. , 2014, “ Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm,” Proc. Natl. Acad. Sci. U. S. A., 111(5), pp. 1927–1932. [CrossRef] [PubMed]
Su, Y. , Dagdeviren, C. , and Li, R. , 2015, “ Measured Output Voltages of Piezoelectric Devices Depend on the Resistance of Voltmeter,” Adv. Funct. Mater., 25(33), pp. 5320–5325. [CrossRef]
Lu, N. , and Kim, D.-H. , 2014, “ Flexible and Stretchable Electronics Paving the Way for Soft Robotics,” Soft Rob., 1(1), pp. 53–62. [CrossRef]
Rus, D. , and Tolley, M. T. , 2015, “ Design, Fabrication and Control of Soft Robots,” Nature, 521(7553), pp. 467–475. [CrossRef] [PubMed]
Gerratt, A. P. , Michaud, H. O. , and Lacour, S. P. , 2015, “ Elastomeric Electronic Skin for Prosthetic Tactile Sensation,” Adv. Funct. Mater., 25(15), pp. 2287–2295. [CrossRef]
Chortos, A. , Liu, J. , and Bao, Z. , 2016, “ Pursuing Prosthetic Electronic Skin,” Nat. Mater., 15(9), pp. 937–950. [CrossRef] [PubMed]
Lee, J. , Wu, J. , Ryu, J. H. , Liu, Z. , Meitl, M. , Zhang, Y.-W. , Huang, Y. , and Rogers, J. A. , 2012, “ Stretchable Semiconductor Technologies With High Areal Coverages and Strain-Limiting Behavior: Demonstration in High-Efficiency Dual-Junction GaInP/GaAs Photovoltaics,” Small, 8(12), pp. 1851–1856. [CrossRef] [PubMed]
Jang, K.-I. , Chung, H. U. , Xu, S. , Lee, C. H. , Luan, H. , Jeong, J. , Cheng, H. , Kim, G.-T. , Han, S. Y. , Lee, J. W. , Kim, J. , Cho, M. , Miao, F. , Yang, Y. , Jung, H. N. , Flavin, M. , Liu, H. , Kong, G. W. , Yu, K. J. , Rhee, S. I. , Chung, J. , Kim, B. , Kwak, J. W. , Yun, M. H. , Kim, J. Y. , Song, Y. M. , Paik, U. , Zhang, Y. , Huang, Y. , and Rogers, J. A. , 2015, “ Soft Network Composite Materials With Deterministic and Bio-Inspired Designs,” Nat. Commun., 6, p. 6566. [CrossRef] [PubMed]
Gerbode, S. J. , Puzey, J. R. , McCormick, A. G. , and Mahadevan, L. , 2012, “ How the Cucumber Tendril Coils and Overwinds,” Science, 337(6098), pp. 1087–1091. [CrossRef] [PubMed]
Chen, P. , Xu, Y. , He, S. , Sun, X. , Pan, S. , Deng, J. , Chen, D. , and Peng, H. , 2015, “ Hierarchically Arranged Helical Fibre Actuators Driven by Solvents and Vapours,” Nat. Nanotechnol., 10(12), pp. 1077–1083. [CrossRef] [PubMed]
Stoppa, M. , and Chiolerio, A. , 2014, “ Wearable Electronics and Smart Textiles: A Critical Review,” Sensors, 14(7), pp. 11957–11992. [CrossRef] [PubMed]
Maziz, A. , Concas, A. , Khaldi, A. , Stalhand, J. , Persson, N.-K. , and Jager, E. W. H. , 2017, “ Knitting and Weaving Artificial Muscles,” Sci. Adv., 3(1), p. e1600327. [CrossRef] [PubMed]
Ma, Y. , Jang, K.-I. , Wang, L. , Jung, H. N. , Kwak, J. W. , Xue, Y. , Chen, H. , Yang, Y. , Shi, D. , Feng, X. , Rogers, J. A. , and Huang, Y. , 2016, “ Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics,” Adv. Funct. Mater., 26(29), pp. 5345–5351. [CrossRef] [PubMed]
Su, Y. , Ping, X. , Yu, K. J. , Lee, J. W. , Fan, J. A. , Wang, B. , Li, M. , Li, R. , Harburg, D. V. , Huang, Y. , Yu, C. , Mao, S. , Shim, J. , Yang, Q. , Lee, P.-Y. , Armonas, A. , Choi, K.-J. , Yang, Y. , Paik, U. , Chang, T. , Dawidczyk, T. J. , Huang, Y. , Wang, S. , and Rogers, J. A. , 2017, “ In-Plane Deformation Mechanics for Highly Stretchable Electronics,” Adv. Mater., 29(8), p. 1604989. [CrossRef]
Widlund, T. , Yang, S. X. , Hsu, Y. Y. , and Lu, N. S. , 2014, “ Stretchability and Compliance of Freestanding Serpentine-Shaped Ribbons,” Int. J. Solids Struct., 51(23–24), pp. 4026–4037. [CrossRef]
ABAQUS, 2013, “ Analysis User's Guide V6.13,” Dassault Systèmes, Vélizy-Villacoublay, France.

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of novel nonbuckling-based prestrain-free design for strain-limiting substrate of stretchable electronics. (a) Demonstration of the strain-limiting structure. (b) –(g) Fabrication of a representative strain-limiting substrate. (h) Measured stress-strain relationship in comparison with that from FEA.

Grahic Jump Location
Fig. 2

Quantitative study of a strain-limiting substrate utilizing a single PI trace. (a) Configuration of a single PI trace mounted on a silbione substrate. (b) FEA images of a single unit cell of the system under different strain levels. (c) and (d) An analytic mechanics model for the unit cell. (e) Stress–strain curves of the PI/silbione system from analytic modeling and FEA. (f)–(k) Effects on the stress–strain relationship of the (f) central angle, (g) PI thickness, (h) PI width, (i) cross-sectional dimensions, (j) substrate thickness, and (k) material of the substrate.

Grahic Jump Location
Fig. 3

Representative loading conditions (uniaxial, 45 deg, and biaxial tensions) for a strain-limiting PI/silbione substrate. (a) FEA results of the strain-limiting substrate under four applied strains (0%, 45%, 57%, and 60%). (b) Stress–strain curves of the strain-limiting substrate under different loading conditions, with comparisons to the unit cell model proposed in Fig. 2. (c) Size effect on the stress–strain curves of the strain-limiting substrates, where R = 500, 250, 125, and 50 μm, wPI = 25, 12.5, 6.25, and 2.5 μm, and tPI = 100, 50, 25, and 10 μm for T = 2000, 1000, 500, and 200 μm, respectively.

Grahic Jump Location
Fig. 4

Alternative geometric designs of strain-limiting substrates. (a) and (b) Designs with differing PI trace lengths within a unit cell. (c) and (d) Designs based on splitting a PI trace into multiple adjacent traces. (e) and (f) Designs based on differing central angles in the PI arc sections. (g) Impact of PI length on the stress–strain relationship. (h) Impact of number of adjacent PI traces on the stress–strain relationship. (i) Stress–strain curves of the strain-limiting substrates shown in (e) and (f), under different loading conditions.

Grahic Jump Location
Fig. 5

Strain distribution measurements on the chest based on digital image correlation method. (a) Image of fully relaxed body. (b)–(e) Strain distributions measured during four extreme body movements (described in detail in the main text).

Grahic Jump Location
Fig. 6

Strain-limiting substrate-based stretchable Cu electrode for electrophysiological signals measurement. (a) Optical image of the electrode. (b) Cu electrode network under uniaxial tension. (c)–(d) FEA results of Cu wires when stretched to 19.8% and 20% applied strain. (e) Stress–strain curve of the PI/silbione system. (f) Image of the electrode adhered to a chest. (g)–(k) Electrocardiograms of the subject when fully relaxed and during extreme body movements. (l) Image of the electrode adhered inside the forearm. (m) Electromyogram during hand clenches.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In