Research Papers

Thermomechanical Analysis of Epidermal Electronic Devices Integrated With Human Skin

[+] Author and Article Information
Yuhang Li

Institute of Solid Mechanics,
Beihang University (BUAA),
Beijing 100191, China;
Key Laboratory of Soft Machines and Smart
Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China;
State Key Laboratory of Digital Manufacturing
Equipment and Technology,
Huazhong University of Science and Technology,
Wuhan 430074, China

Jianpeng Zhang, Yufeng Xing

Institute of Solid Mechanics,
Beihang University (BUAA),
Beijing 100191, China

Jizhou Song

Key Laboratory of Soft Machines and Smart
Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China;
Department of Engineering Mechanics and Soft
Matter Research Center,
Zhejiang University,
Hangzhou 310027, China
e-mail: jzsong@zju.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received August 9, 2017; final manuscript received August 18, 2017; published online September 12, 2017. Editor: Yonggang Huang.

J. Appl. Mech 84(11), 111004 (Sep 12, 2017) (7 pages) Paper No: JAM-17-1435; doi: 10.1115/1.4037704 History: Received August 09, 2017; Revised August 18, 2017

Epidermal electronic devices (EEDs) are very attractive in applications of monitoring human vital signs for diagnostic, therapeutic, or surgical functions due to their ability for integration with human skin. Thermomechanical analysis is critical for EEDs in these applications since excessive heating-induced temperature increase and stress may cause discomfort. An axisymmetric analytical thermomechanical model based on the transfer matrix method, accounting for the coupling between the Fourier heat conduction in the EED and the bio-heat transfer in human skin, the multilayer feature of human skin and the size effect of the heating component in EEDs, is established to study the thermomechanical behavior of the EED/skin system. The predictions of the temperature increase and principle stress from the analytical model agree well with those from finite element analysis (FEA). The influences of various geometric parameters and material properties of the substrate on the maximum principle stress are fully investigated to provide design guidelines for avoiding the adverse thermal effects. The thermal and mechanical comfort analyses are then performed based on the analytical model. These results establish the theoretical foundation for thermomechanical analysis of the EED/skin system.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Kim, D.-H. , Lu, N. S. , Ma, R. , Kim, Y.-S. , Kim, R.-H. , Wang, S. D. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T. I. , Chowdhury, R. , Ying, M. , Xu, L. Z. , Li, M. , Chung, H. J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y. W. , Omenetto, F. G. , Huang, Y. G. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Webb, R. C. , Bonifas, A. P. , Behnaz, A. , Zhang, Y. H. , Yu, K. J. , Cheng, H. Y. , Shi, M. , Bian, Z. , Liu, Z. , Kim, Y.-S. , Yeo, W.-H. , Park, J. S. , Song, J. , Li, Y. , Huang, Y. , Gorbach, A. M. , and Rogers, J. A. , 2013, “ Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin,” Nat. Mater., 12(10), pp. 938–944. [CrossRef] [PubMed]
Lee, J. W. , Xu, R. X. , Lee, S. , Jang, K. I. , Yang, Y. C. , Banks, A. , Yu, K. J. , Kim, J. , Xu, S. , Ma, S. Y. , Jang, S. W. , Won, P. , Li, Y. H. , Kim, B. H. , Choe, J. Y. , Huh, S. , Kwon, Y. H. , Huang, Y. G. , Paik, U. , and Rogers, J. A. , 2016, “ Soft, Thin Skin-Mounted Power Management Systems and Their Use in Wireless Thermography,” Proc. Natl. Acad. Sci. U. S. A., 113(22), pp. 6131–6136. [CrossRef] [PubMed]
Zhang, Y. H. , Webb, R. C. , Luo, H. Y. , Xue, Y. G. , Kurniawan, J. , Cho, N. H. , Krishnan, S. , Li, Y. H. , Huang, Y. G. , and Rogers, J. A. , 2016, “ Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature,” Adv. Healthcare Mater., 5(1), pp. 119–127. [CrossRef]
Webb, R. C. , Ma, Y. , Krishnan, S. , Li, Y. , Yoon, S. , Guo, X. , Feng, X. , Shi, Y. , Seidel, M. , Cho, N. H. , Kurniawan, J. , Ahad, J. , Sheth, N. , Kim, J. , Taylor, J. G. , Darlington, T. , Chang, K. , Huang, W. , Ayers, J. , Gruebele, A. , Pielak, R. M. , Slepian, M. J. , Huang, Y. , Gorbach, A. M. , and Rogers, J. A. , 2015, “ Epidermal Devices for Noninvasive, Precise, and Continuous Mapping of Macrovascular and Microvascular Blood Flow,” Sci. Adv., 1(9), p. e1500701. [CrossRef] [PubMed]
Gao, L. , Zhang, Y. H. , Malyarchuk, V. , Jia, L. , Jang, K. I. , Webb, R. C. , Fu, H. R. , Shi, Y. , Zhou, G. Y. , Shi, L. K. , Shah, D. , Huang, X. , Xu, B. X. , Yu, C. J. , Huang, Y. G. , and Rogers, J. A. , 2014, “ Epidermal Photonic Devices for Quantitative Imaging of Temperature and Thermal Transport Characteristics of the Skin,” Nat. Commun., 5, p. 4938. [CrossRef] [PubMed]
Lee, H. , Choi, T. K. , Lee, Y. B. , Cho, H. R. , Ghaffari, R. , Wang, L. , Choi, H. J. , Chung, T. D. , Lu, N. S. , Hyeon, T. , Choi, S. H. , and Kim, D. H. , 2016, “ A Graphene-Based Electrochemical Device With Thermoresponsive Microneedles for Diabetes Monitoring and Therapy,” Nat. Nanotechnol., 11(6), pp. 566–572.
Gao, W. , Emaminejad, S. , Nyein, H. Y. Y. , Challa, S. , Chen, K. V. , Peck, A. , Fahad, H. M. , Ota, H. , Shiraki, H. , Kiriya, D. , Lien, D. H. , Brooks, G. A. , Davis, R. W. , and Javey, A. , 2016, “ Fully Integrated Wearable Sensor Arrays for Multiplexed In Situ Perspiration Analysis,” Nature, 529(7587), p. 509. [CrossRef] [PubMed]
Li, H. , Xu, Y. , Li, X. , Chen, Y. , Jiang, Y. , Zhang, C. , Lu, B. , Wang, J. , Ma, Y. , Chen, Y. , Huang, Y. , Ding, M. , Su, H. , Song, G. , Luo, Y. , and Feng, X. , 2017, “ Epidermal Inorganic Optoelectronics for Blood Oxygen Measurement,” Adv. Healthcare Mater., 6(9), p. 1601013. [CrossRef]
Dagdeviren, C. , Su, Y. W. , Joe, P. , Yona, R. , Liu, Y. H. , Kim, Y. S. , Huang, Y. A. , Damadoran, A. R. , Xia, J. , Martin, L. W. , Huang, Y. G. , and Rogers, J. A. , 2014, “ Conformable Amplified Lead Zirconate Titanate Sensors With Enhanced Piezoelectric Response for Cutaneous Pressure Monitoring,” Nat. Commun., 5, p. 4496. [CrossRef] [PubMed]
Wang, C. , Hwang, D. , Yu, Z. B. , Takei, K. , Park, J. , Chen, T. , Ma, B. W. , and Javey, A. , 2013, “ User-Interactive Electronic Skin for Instantaneous Pressure Visualization,” Nat. Mater., 12(10), pp. 899–904. [CrossRef] [PubMed]
Shi, Y. , Dagdeviren, C. , Rogers, J. A. , Gao, C. F. , and Huang, Y. , 2015, “ An Analytical Model for Skin Modulus Measurement Via Conformal Piezoelectric Systems,” ASME J. Appl. Mech., 82(9), p. 091007. [CrossRef]
Yuan, J. H. , Shi, Y. , Pharr, M. , Feng, X. , Rogers, J. A. , and Huang, Y. , 2016, “ A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young’s Moduli of Epidermis and Dermis,” ASME J. Appl. Mech., 83(8), p. 084501. [CrossRef]
Cheng, H. Y. , and Wang, S. D. , 2014, “ Mechanics of Interfacial Delamination in Epidermal Electronics Systems,” ASME J. Appl. Mech., 81(4), p. 044501. [CrossRef]
Liu, W. , and Lu, N. S. , 2016, “ Conformability of a Thin Elastic Membrane Laminated on a Soft Substrate With Slightly Wavy Surface,” ASME J. Appl. Mech., 83(4), p. 041007. [CrossRef]
Lu, N. S. , Zhang, Z. , Yoon, J. , and Suo, Z. G. , 2012, “ Singular Stress Fields at Corners in Flip-Hip Packages,” Eng. Fract. Mech., 86, pp. 38–47. [CrossRef]
Huang, Y. , Yuan, J. , Zhang, Y. , and Feng, X. , 2016, “ Interfacial Delamination of Inorganic Films on Viscoelastic Substrates,” ASME J. Appl. Mech., 83(10), p. 101005. [CrossRef]
Xu, F. , Lu, T. J. , and Steffen, K. A. , 2008, “ Biothermomechanics of Skin Tissues,” J. Mech. Phys. Solids, 56(5), pp. 1852–1884. [CrossRef]
Xu, F. , Lu, T. J. , Steffen, K. A. , and Ng, E. Y. K. , 2009, “ Mathematical Modeling of Skin Bioheat Transfer,” Appl. Mech. Rev., 62(5), p. 050801. [CrossRef]
Song, J. , Feng, X. , and Huang, Y. , 2016, “ Mechanics and Thermal Management of Stretchable Inorganic Electronics,” Natl. Sci. Rev., 3(1), p. 128. [CrossRef] [PubMed]
Cui, Y. , Li, Y. H. , Xing, Y. F. , Yang, T. Z. , and Song, J. Z. , 2016, “ One-Dimensional Thermal Analysis of the Flexible Electronic Devices Integrated With Human Skin,” Micromachines, 7(11), p. 210. [CrossRef]
Cui, Y. , Li, Y. H. , Xing, Y. F. , Ji, Q. G. , and Song, J. Z. , 2017, “ Thermal Design of Rectangular Microscale Inorganic Light-Emitting Diodes,” Appl. Therm. Eng., 122, pp. 653–660. [CrossRef]
Lü, C. , Li, Y. , Song, J. , Kim, H. S. , Brueckner, E. , Fang, B. , Hwang, K. C. , Huang, Y. , Nuzzo, R. G. , and Rogers, J. A. , 2012, “ A Thermal Analysis of the Operation of Microscale, Inorganic Light-Emitting Diodes,” Proc. R. Soc. London A, 468(2146), pp. 3215–3223. [CrossRef]
Li, Y. , Shi, Y. , Song, J. , Lü, C. , Kim, T. , Rogers, J. A. , and Huang, Y. , 2013, “ Thermal Properties of Microscale Inorganic Light-Emitting Diodes in a Pulsed Operation,” J. Appl. Phys., 113(14), p. 144505. [CrossRef]
Xu, F. , Seffen, K. A. , and Lu, T. J. , 2008, “ Non-Fourier Analysis of Skin Biothermomechanics,” Int. J. Heat Mass Transfer, 51(9–10), pp. 2237–3704. [CrossRef]
Carslaw, H. S. , and Jaeger, J. C. , 1959, Conduction of Heat in Solids, 2nd ed., Carendon Press, Oxford, UK.
Lee, C. H. , Ma, Y. , Jang, K. I. , Banks, A. , Pan, T. , Feng, X. , Kim, J. S. , Kang, D. , Raj, M. S. , McGrane, B. L. , Morey, B. , Wang, X. , Ghaffari, R. , Huang, Y. , and Rogers, J. A. , 2015, “ Soft Core/Shell Packages for Stretchable Electronics,” Adv. Funct. Mater., 25(24), pp. 3698–3704. [CrossRef]
Xu, F. , Wen, T. , Seffen, K. , and Lu, T. , 2008, “ Modeling of Skin Thermal Pain: A Preliminary Study,” Appl. Math. Comput., 205(1), pp. 37–46.


Grahic Jump Location
Fig. 2

(a) The distribution of the temperature increase along the radial direction at the EED/skin interface and (b) the distribution of the temperature increase along the thickness direction with r = 0

Grahic Jump Location
Fig. 1

(a) An EED consisting of temperature sensors and heaters on a skin in a twisting motion (Reproduced with permission from Webb et al. [2]. Copyright 2013 by Nature Publishing Group.) and (b) schematic diagram of the cross-sectional structure for the EED/skin system.

Grahic Jump Location
Fig. 3

The distribution of the maximum principle stress at the EED/skin interface along the radial direction

Grahic Jump Location
Fig. 4

(a) The influences of the thermal conductivity and thickness of the substrate on the maximum principle stress σmax at the EED/skin interface and (b) the influences of the Young’s modulus and thermal expansion coefficient of the substrate on the maximum principle stress σmax at the EED/skin interface

Grahic Jump Location
Fig. 5

(a) The maximum temperature increase and (b) the maximum principle stress σmax at the EED/skin interface varies with the size of heating component and the substrate thickness



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In