Research Papers

A Two-Way Unidirectional Narrow-Band Acoustic Filter Realized by a Graded Phononic Crystal

[+] Author and Article Information
Yingjie Chen

Department of Engineering Mechanics,
Zhejiang University,
Hangzhou 310027, China

Yang Huang

Department of Civil Engineering,
Zhejiang University,
Hangzhou 310058, China
e-mail: 0015818@zju.edu.cn

Chaofeng Lü

Department of Civil Engineering,
Zhejiang University,
Hangzhou 310058, China;
Key Laboratory of Soft Machines and
Smart Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China;
Soft Matter Research Center,
Zhejiang University,
Hangzhou 310027, China

Weiqiu Chen

Department of Engineering Mechanics,
Zhejiang University,
Hangzhou 310027, China;
Key Laboratory of Soft Machines and
Smart Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China;
Soft Matter Research Center,
Zhejiang University,
Hangzhou 310027, China;
State Key Laboratory of Fluid Power
and Mechatronic Systems,
Zhejiang University,
Hangzhou 310027, China

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received May 25, 2017; final manuscript received June 19, 2017; published online July 7, 2017. Editor: Yonggang Huang.

J. Appl. Mech 84(9), 091003 (Jul 07, 2017) (6 pages) Paper No: JAM-17-1275; doi: 10.1115/1.4037148 History: Received May 25, 2017; Revised June 19, 2017

Unidirectional acoustic transmission is acquired in a one-dimensional graded phononic crystal. The distinct feature of the present design is that waves can propagate unidirectionally at a certain frequency from the left to right, and waves at another frequency can propagate in the opposite direction from the right to left. This two-way asymmetric propagation behavior is realized at the narrow resonant frequencies in the acoustic band gap by a novel mechanism, which is totally linear and obeys the time-reversal symmetry. Simulation shows that for the graded heterogeneous structure, the resonant peaks of frequency in the acoustic band gap for opposite propagation directions become different. In the transmission spectrum, this mechanism corresponds to a pass-band splitting, and each separated peak represents a unidirectional propagation behavior. The separation of two peaks has been proved to have a close relation to the grading degree of the material property in the spatially periodic components. The unique propagation characteristic obtained at resonant frequencies in the band gaps may provide us a new way to realize a two-way unidirectional narrow-band acoustic filter.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Kushwaha, M. S. , Halevi, P. , Dobrzynski, L. , and Djafari-Rouhani, B. , 1993, “ Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71(13), p. 2022. [CrossRef] [PubMed]
Sigalas, M. M. , and Economou, E. N. , 1992, “ Elastic and Acoustic Wave Band Structure,” J. Sound Vib., 158(2), pp. 377–382. [CrossRef]
Martinezsala, R. , Sancho, J. , Sánchez, J. V. , Gómez, V. , Llinares, J. , and Meseguer, F. , 1995, “ Sound-Attenuation by Sculpture,” Nature, 378(6554), p. 241. [CrossRef]
Vasseur, J. , Deymier, P. , Chenni, B. , Djafari-Rouhani, B. , Dobrzynski, L. , and Prevost, D. , 2001, “ Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals,” Phys. Rev. Lett., 86(14), p. 3012. [CrossRef] [PubMed]
Vasseur, J. , Djafari-Rouhani, B. , Dobrzynski, L. , Kushwaha, M. , and Halevi, P. , 1994, “ Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: The Carbon/Epoxy Composite and Some Metallic Systems,” J. Phys.: Condens. Matter, 6(42), p. 8759. [CrossRef]
Bian, Z. G. , and Peng, W. , 2014, “ Thermal Tuning of Band Structures in a One-Dimensional Phononic Crystal,” ASME J. Appl. Mech., 81(4), p. 041008. [CrossRef]
Li, F. L. , Wang, Y. S. , Zhang, C. Z. , and Yu, G. L. , 2014, “ Bandgaps of Two-Dimensional Phononic Crystals With Sliding Interface Conditions,” ASME J. Appl. Mech., 81(6), p. 064501. [CrossRef]
Brito-Santana, H. , Wang, Y. S. , Rodríguez-Ramos, R. , Bravo-Castillero, J. , Guinovart-Díaz, R. , and Tita, V. , 2015, “ A Dispersive Nonlocal Model for In-Plane Wave Propagation in Laminated Composites With Periodic Structures,” ASME J. Appl. Mech., 82(3), p. 031006. [CrossRef]
Chen, Q. L. , and Elbanna, A. , 2016, “ Modulating Elastic Band Gap Structure in Layered Soft Composites Using Sacrificial Interfaces,” ASME J. Appl. Mech., 83(11), p. 111009. [CrossRef]
Martínez-Sala, R. , Rubio, C. , García-Raffi, L. M. , Sánchez-Pérez, J. V. , Sánchez-Pérez, E. A. , and Llinares, J. , 2006, “ Control of Noise by Trees Arranged Like Sonic Crystals,” J. Sound Vib., 291(1–2), pp. 100–106. [CrossRef]
Sánchez-Dehesa, J. , Garcia-Chocano, V. M. , Torrent, D. , Cervera, F. , Cabrera, S. , and Simon, F. , 2011, “ Noise Control by Sonic Crystal Barriers Made of Recycled Materials,” J. Acoust. Soc. Am., 129(3), p. 1173. [CrossRef] [PubMed]
Qiu, C. , Liu, Z. , Shi, J. , and Chan, C. , 2005, “ Directional Acoustic Source Based on the Resonant Cavity of Two-Dimensional Phononic Crystals,” Appl. Phys. Lett., 86(22), p. 224105. [CrossRef]
Yuan, B. , Liang, B. , Tao, J. , Zou, X. , and Cheng, J. , 2012, “ Broadband Directional Acoustic Waveguide With High Efficiency,” Appl. Phys. Lett., 101(4), p. 043503. [CrossRef]
Khelif, A. , Choujaa, A. , Benchabane, S. , Djafari-Rouhani, B. , and Laude, V. , 2004, “ Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides,” Appl. Phys. Lett., 84(22), p. 4400. [CrossRef]
Khelif, A. , Choujaa, A. , Djafari-Rouhani, B. , Wilm, M. , Ballandras, S. , and Laude, V. , 2003, “ Trapping and Guiding of Acoustic Waves by Defect Modes in a Full-Band-Gap Ultrasonic Crystal,” Phys. Rev. B, 68(21), p. 214301. [CrossRef]
Lin, S.-C. S. , Huang, T. J. , Sun, J. H. , and Wu, T. T. , 2009, “ Gradient-Index Phononic Crystals,” Phys. Rev. B, 79(9), p. 094302. [CrossRef]
He, Z. , Cai, F. , and Liu, Z. , 2008, “ Guiding Acoustic Waves With Graded Phononic Crystals,” Solid State Commun., 148(1–2), pp. 74–77. [CrossRef]
Su, X. L. , Gao, Y. W. , and Zhou, Y. H. , 2012, “ The Influence of Material Properties on the Elastic Band Structures of One-Dimensional Functionally Graded Phononic Crystals,” J. Appl. Phys., 112(12), p. 123503. [CrossRef]
Liang, Y. J. , Chen, L. W. , Wang, C. C. , and Chang, I. L. , 2014, “ An Acoustic Absorber Implemented by Graded Index Phononic Crystals,” J. Appl. Phys., 115(24), p. 244513. [CrossRef]
Jin, Y. , Torrent, D. , Pennec, Y. , Pan, Y. , and Djafari-Rouhani, B. , 2015, “ Simultaneous Control of the S 0 and A 0 Lamb Modes by Graded Phononic Crystal Plates,” J. Appl. Phys., 117(24), p. 244904. [CrossRef]
Zhang, X. , Qu, Z. , He, X. , and Lu, D. , 2016, “ Experimental Study on the Sound Absorption Characteristics of Continuously Graded Phononic Crystals,” AIP Adv., 6(10), p. 105205. [CrossRef]
Sánchez-Pérez, J. , Caballero, D. , Martinez-Sala, R. , Rubio, C. , Sánchez-Dehesa, J. , Meseguer, F. , Llinares, J. , and Gálvez, F. , 1998, “ Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders,” Phys. Rev. Lett., 80(24), p. 5325. [CrossRef]
Kafesaki, M. , and Economou, E. N. , 1999, “ Multiple-Scattering Theory for Three-Dimensional Periodic Acoustic Composites,” Phys. Rev. B, 60(17), p. 11993. [CrossRef]
Kafesaki, M. , Sigalas, M. , and Garcia, N. , 2000, “ Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials,” Phys. Rev. Lett., 85(19), p. 4044. [CrossRef] [PubMed]
Huang, Y. , Shen, X. D. , Zhang, C. L. , and Chen, W. Q. , 2014, “ Mechanically Tunable Band Gaps in Compressible Soft Phononic Laminated Composites With Finite Deformation,” Phys. Lett. A, 378(30–31), pp. 2285–2289. [CrossRef]
Liang, B. , Guo, X. S. , Tu, J. , Zhang, D. , and Cheng, J. C. , 2010, “ An Acoustic Rectifier,” Nat. Mater., 9(12), pp. 989–992. [CrossRef] [PubMed]
Boechler, N. , Theocharis, G. , and Daraio, C. , 2011, “ Bifurcation-Based Acoustic Switching and Rectification,” Nat. Mater., 10(9), pp. 665–668. [CrossRef] [PubMed]
Liu, C. , Du, Z. L. , Sun, Z. , Gao, H. J. , and Guo, X. , 2015, “ Frequency-Preserved Acoustic Diode Model With High Forward-Power-Transmission Rate,” Phys. Rev. Appl., 3(6), p. 064014. [CrossRef]
Li, X. F. , Ni, X. , Feng, L. , Lu, M. H. , He, C. , and Chen, Y. F. , 2011, “ Tunable Unidirectional Sound Propagation Through a Sonic-Crystal-Based Acoustic Diode,” Phys. Rev. Lett., 106(8), p. 084301. [CrossRef] [PubMed]
He, Z. , Peng, S. , Ye, Y. , Dai, Z. , Qiu, C. , Ke, M. , and Liu, Z. , 2011, “ Asymmetric Acoustic Gratings,” Appl. Phys. Lett., 98(8), p. 083505. [CrossRef]
Sun, H. , Zhang, S. , and Shui, X. , 2012, “ A Tunable Acoustic Diode Made by a Metal Plate With Periodical Structure,” Appl. Phys. Lett., 100(10), p. 103507. [CrossRef]
Cicek, A. , Adem Kaya, O. , and Ulug, B. , 2012, “ Refraction-Type Sonic Crystal Junction Diode,” Appl. Phys. Lett., 100(11), p. 111905. [CrossRef]
Chen, W. Q. , and Ding, H. J. , 2012, “ The State-Space Method and Its Application in Analyses of FGM Structures,” Mechanics of Functionally Graded Materials and Structures, Z. Zhong , L. Z. Wu , and W. Q. Chen , eds., Nova Science Publishers, New York, pp. 139–178.


Grahic Jump Location
Fig. 1

Sketch of the finite periodic structure with grading property

Grahic Jump Location
Fig. 2

(a) Band structure of an infinite periodic structure and (b) transmission spectrum of a finite periodic structure

Grahic Jump Location
Fig. 3

Transmission spectra for different KA and uniform material B: (a) KA = 0.01, (b) KA = 0.02, and (c) KA = 0.03

Grahic Jump Location
Fig. 4

Transmission spectra for the same KA = 0.02 and different KB: (a) KB = 0.02, (b) KB = 0, and (c) KB = −0.02

Grahic Jump Location
Fig. 5

Separation of resonant peaks as a function of KA + KB with the constraint conditions: (a) KB = 0, (b) KA = 0, and (c) KA = KB

Grahic Jump Location
Fig. 6

Natural frequencies of the structure (KA = 0.02 and KB = 0) with different boundary conditions: (a) left-hand side fixed and right-hand side free and (b) left-hand side free and right-hand side fixed



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In