Williamson,
C. H. K.
, 1996, “
Vortex Dynamics in the Cylinder Wake,” Annu. Rev. Fluid Mech.,
28(1), pp. 477–539.

[CrossRef]
Williamson,
C. H. K.
, and
Govardhan,
R.
, 2004, “
Vortex-Induced Vibrations,” Annu. Rev. Fluid Mech.,
36(1), pp. 413–455.

[CrossRef]
Gabbai,
R. D.
, and
Benaroya,
H.
, 2005, “
An Overview of Modeling and Experiments of Vortex-Induced Vibration of Circular Cylinders,” J. Sound Vib.,
282(3), pp. 575–616.

[CrossRef]
Bearman,
P. W.
, 2011, “
Circular Cylinder Wakes and Vortex-Induced Vibrations,” J. Fluids Struct.,
27(5), pp. 648–658.

[CrossRef]
Tumkur,
R. K. R.
,
Domany,
E.
,
Gendelman,
O. V.
,
Masud,
A.
,
Bergman,
L. A.
, and
Vakakis,
A. F.
, 2013, “
Reduced-Order Model for Laminar Vortex-Induced Vibration of a Rigid Circular Cylinder With an Internal Nonlinear Absorber,” Commun. Nonlinear Sci. Numer. Simul.,
18(7), pp. 1916–1930.

[CrossRef]
Tumkur,
R. K. R.
,
Calderer,
R.
,
Masud,
A.
,
Pearlstein,
A. J.
,
Bergman,
L. A.
, and
Vakakis,
A. F.
, 2013, “
Computational Study of Vortex-Induced Vibration of a Sprung Rigid Circular Cylinder With a Strongly Nonlinear Internal Attachment,” J. Fluids Struct.,
40, pp. 214–232.

[CrossRef]
Tumkur,
R. K. R.
, 2014, “
Modal Interactions and Targeted Energy Transfers in Laminar Vortex-Induced Vibrations of a Rigid Cylinder With Strongly Nonlinear Internal Attachments,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.

Tumkur,
R. K. R.
,
Pearlstein,
A. J.
,
Masud,
A.
,
Gendelman,
O. V.
,
Bergman,
L. A.
, and
Vakakis,
A. F.
, 2017, “
Effect of an Internal Nonlinear Rotational Dissipative Element on Vortex Shedding and Vortex-Induced Vibration of a Sprung Circular Cylinder,” J. Fluid Mech. (submitted).

Vakakis,
A. F.
,
Gendelman,
O. V.
,
Bergman,
L. A.
,
McFarland,
D. M.
,
Kerschen,
G.
, and
Lee,
Y. S.
, 2008, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems,
Springer-Verlag,
New York.

Sigalov,
G.
,
Gendelman,
O. V.
,
Al-Shudeifat,
M. A.
,
Manevitch,
L. I.
,
Vakakis,
A. F.
, and
Bergman,
L.
, 2012, “
Resonance Captures and Targeted Energy Transfers in an Inertially-Coupled Rotational Nonlinear Energy Sink,” Nonlinear Dyn.,
69(4), pp. 1693–1704.

[CrossRef]
Gendelman,
O. V.
,
Sigalov,
G.
,
Manevitch,
L. I.
,
Mane,
M.
,
Vakakis,
A. F.
, and
Bergman,
L. A.
, 2012, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink,” ASME J. Appl. Mech.,
79(1), p. 011012.

[CrossRef]
Sigalov,
G.
,
Gendelman,
O. V.
,
Al-Shudeifat,
M. A.
,
Manevitch,
L. I.
,
Vakakis,
A. F.
, and
Bergman,
L. A.
, 2012, “
Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-of-Freedom System With Nonlinear Inertial Coupling,” Chaos,
22(1), p. 013118.

[CrossRef] [PubMed]
Mehmood,
A.
,
Nayfeh,
A. H.
, and
Hajj,
M. R.
, 2014, “
Effects of a Non-Linear Energy Sink (NES) on Vortex-Induced Vibrations of a Circular Cylinder,” Nonlinear Dyn.,
77(3), pp. 667–680.

[CrossRef]
Dai,
H.
,
Abdelkefi,
A.
, and
Wang,
L.
, 2016, “
Vortex-Induced Vibrations Mitigation Through a Nonlinear Energy Sink,” Commun. Nonlinear Sci. Numer. Simul.,
42, pp. 22–36.

[CrossRef]
Gendelman,
O. V.
,
Vakakis,
A. F.
,
Bergman,
L. A.
, and
McFarland,
D. M.
, 2010, “
Asymptotic Analysis of Passive Nonlinear Suppression of Aeroelastic Instabilities of a Rigid Wing in Subsonic Flow,” SIAM J. Appl. Math.,
70(5), pp. 1655–1677.

[CrossRef]
Gendelman,
O.
, and
Bar,
T.
, 2010, “
Bifurcations of Self-Excitation Regimes in a Van der Pol Oscillator With a Nonlinear Energy Sink,” Physica D,
239(3), pp. 220–229.

[CrossRef]
Domany,
E.
, and
Gendelman,
O. V.
, 2013, “
Dynamic Responses and Mitigation of Limit Cycle Oscillations in Van der Pol–Duffing Oscillator With Nonlinear Energy Sink,” J. Sound Vib.,
332(21), pp. 5489–5507.

[CrossRef]
Benarous,
N.
, and
Gendelman,
O. V.
, 2016, “
Nonlinear Energy Sink With Combined Nonlinearities: Enhanced Mitigation of Vibrations and Amplitude Locking Phenomenon,” Proc. Inst. Mech. Eng.,
230(1), pp. 21–33.

Blanchard,
A. B.
,
Gendelman,
O. V.
,
Bergman,
L. A.
, and
Vakakis,
A. F.
, 2016, “
Capture Into Slow-Invariant-Manifold in the Fluid–Structure Dynamics of a Sprung Cylinder With a Nonlinear Rotator,” J. Fluids Struct.,
63, pp. 155–173.

[CrossRef]
Hartlen,
R. T.
, and
Currie,
I. G.
, 1970, “
Lift-Oscillator Model of Vortex-Induced Vibration,” J. Eng. Mech. Div.,
96(5), pp. 577–591.

Iwan,
W.
, and
Blevins,
R.
, 1974, “
A Model for Vortex Induced Oscillation of Structures,” ASME J. Appl. Mech.,
41(3), pp. 581–586.

[CrossRef]
Nayfeh,
A. H.
,
Owis,
F.
, and
Hajj,
M. R.
, 2003, “
A Model for the Coupled Lift and Drag on a Circular Cylinder,” ASME Paper No. DETC2003/VIB-48455.

Facchinetti,
M. L.
,
De Langre,
E.
, and
Biolley,
F.
, 2004, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations,” J. Fluids Struct.,
19(2), pp. 123–140.

[CrossRef]
Fischer,
P. F.
,
Lottes,
J. W.
, and
Kerkemeier,
S. G.
, 2008, “
Nek5000,” Argonne National Laboratory, Lemont, IL, accessed June 7, 2017,

http://nek5000.mcs.anl.gov
Blanchard,
A. B.
,
Bergman,
L. A.
,
Vakakis,
A. F.
, and
Pearlstein,
A. J.
, 2016, “
Multiple Long-Time Solutions for Intermediate Reynolds Number Flow Past a Circular Cylinder With a Nonlinear Inertial and Dissipative Attachment,” 69th Annual Meeting of the APS Division of Fluid Dynamics, Portland, OR, Nov. 20–22.

Blanchard,
A.
,
Bergman,
L. A.
, and
Vakakis,
A. F.
, 2017, “
Targeted Energy Transfer in Laminar Vortex-Induced Vibration of a Sprung Cylinder With a Nonlinear Dissipative Rotator,” Physica D,
350, pp. 26–44.

Mittal,
S.
, and
Singh,
S.
, 2005, “
Vortex-Induced Vibrations at Subcritical Re,” J. Fluid Mech.,
534, pp. 185–194.

[CrossRef]
Giannetti,
F.
, and
Luchini,
P.
, 2007, “
Structural Sensitivity of the First Instability of the Cylinder Wake,” J. Fluid Mech.,
581, pp. 167–197.

[CrossRef]
Sipp,
D.
, and
Lebedev,
A.
, 2007, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows,” J. Fluid Mech.,
593, pp. 333–358.

[CrossRef]
Zebib,
A.
, 1987, “
Stability of Viscous Flow Past a Circular Cylinder,” J. Eng. Math.,
21(2), pp. 155–165.

[CrossRef]
Noack,
B. R.
, and
Eckelmann,
H.
, 1994, “
A Global Stability Analysis of the Steady and Periodic Cylinder Wake,” J. Fluid Mech.,
270, pp. 297–330.

[CrossRef]
Dušek,
J.
,
Le Gal,
P.
, and
Fraunié,
P.
, 1994, “
A Numerical and Theoretical Study of the First Hopf Bifurcation in a Cylinder Wake,” J. Fluid Mech.,
264, pp. 59–80.

[CrossRef]
Joseph,
D. D.
, 1967, “
Parameter and Domain Dependence of Eigenvalues of Elliptic Partial Differential Equations,” Arch. Ration. Mech. Anal.,
24(5), pp. 325–351.

[CrossRef]
Chen,
K. K.
,
Tu,
J. H.
, and
Rowley,
C. W.
, 2012, “
Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses,” J. Nonlinear Sci.,
22(6), pp. 887–915.

[CrossRef]
Noack,
B. R.
,
Afanasiev,
K.
,
Morzynski,
M.
,
Tadmor,
G.
, and
Thiele,
F.
, 2003, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake,” J. Fluid Mech.,
497, pp. 335–363.

[CrossRef]
Deane,
A. E.
,
Kevrekidis,
I. G.
,
Karniadakis,
G. E.
, and
Orszag,
S. A.
, 1991, “
Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders,” Phys. Fluids A,
3(10), pp. 2337–2354.

[CrossRef]
Ma,
X.
, and
Karniadakis,
G. E.
, 2002, “
A Low-Dimensional Model for Simulating Three-Dimensional Cylinder Flow,” J. Fluid Mech.,
458(1), pp. 181–190.

[CrossRef]
Noack,
B. R.
, and
Eckelmann,
H.
, 1994, “
A Low-Dimensional Galerkin Method for the Three-Dimensional Flow Around a Circular Cylinder,” Phys. Fluids,
6(1), pp. 124–143.

[CrossRef]
Schmid,
P. J.
, 2010, “
Dynamic Mode Decomposition of Numerical and Experimental Data,” J. Fluid Mech.,
656, pp. 5–28.

[CrossRef]
Tumkur,
R. K. R.
,
Fischer,
P. F.
,
Bergman,
L. A.
,
Vakakis,
A. F.
, and
Pearlstein,
A. J.
, 2017, “
Stability of the Steady, Two-Dimensional Flow Past a Linearly-Sprung Circular Cylinder,” J. Fluid Mech. (submitted).

Dowell,
E.
,
Crawley,
E.
,
Curtiss,
H., Jr.
,
Peters,
D.
,
Scanlan,
R.
, and
Sisto,
F.
, 1995, A Modern Course in Aeroelasticity,
Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Iooss,
G.
, and
Adelmeyer,
M.
, 1992, Topics in Bifurcation Theory and Applications,
World Scientific,
London.

Guckenheimer,
J.
, and
Holmes,
P.
, 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,
Springer,
Berlin.

Kuznetsov,
Y. A.
, 1995, Elements of Applied Bifurcation Theory,
Springer Verlag,
New York.

Habib,
G.
, and
Kerschen,
G.
, 2015, “
Suppression of Limit Cycle Oscillations Using the Nonlinear Tuned Vibration Absorber,” Proc. R. Soc. A,
471(2176), p. 20140976.

[CrossRef]
Gai,
G.
, and
Timme,
S.
, 2016, “
Nonlinear Reduced-Order Modelling for Limit-Cycle Oscillation Analysis,” Nonlinear Dyn.,
84(2), pp. 991–1009.

[CrossRef]
Malher,
A.
,
Touzé,
C.
,
Doaré,
O.
,
Habib,
G.
, and
Kerschen,
G.
, 2016, “
Passive Control of Airfoil Flutter Using a Nonlinear Tuned Vibration Absorber,” 11th International Conference on Flow-Induced Vibrations (FIV), The Hague, The Netherlands, July 4–6.

Manevitch,
L. I.
, 2001, “
The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables,” Nonlinear Dyn.,
25(1–3), pp. 95–109.

[CrossRef]
Gendelman,
O.
, and
Starosvetsky,
Y.
, 2007, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing,” ASME J. Appl. Mech.,
74(2), pp. 325–331.

[CrossRef]
Starosvetsky,
Y.
, and
Gendelman,
O.
, 2008, “
Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry,” Physica D,
237(13), pp. 1719–1733.

[CrossRef]
Guckenheimer,
J.
,
Hoffman,
K.
, and
Weckesser,
W.
, 2005, “
Bifurcations of Relaxation Oscillations Near Folded Saddles,” Int. J. Bifurcation Chaos,
15(11), pp. 3411–3421.

[CrossRef]
Guckenheimer,
J.
,
Wechselberger,
M.
, and
Young,
L.-S.
, 2006, “
Chaotic Attractors of Relaxation Oscillators,” Nonlinearity,
19(3), pp. 701–720.

[CrossRef]
Benoit,
E.
,
Callot,
J. L.
,
Diener,
F.
, and
Diener,
M.
, 1981, “
Chasse au canard (première partie),” Collect. Math.,
32(1), pp. 37–76.

Shilnikov,
L.
, 1965, “
A Case of the Existence of a Countable Number of Periodic Motions (Point Mapping Proof of Existence Theorem Showing Neighborhood of Trajectory Which Departs From and Returns to Saddle-Point Focus Contains Denumerable Set of Periodic Motions),” Sov. Math.,
6, pp. 163–166.

Shilnikov,
L.
, 1967, “
The Existence of a Denumerable Set of Periodic Motions in Four-Dimensional Space in an Extended Neighborhood of a Saddle-Focus,” Sov. Math. Dokl.,
8, pp. 54–58.

Wiggins,
S.
, 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos,
Springer-Verlag,
Berlin.