0
Research Papers

Symplectic Analysis for Wrinkles: A Case Study of Layered Neo-Hookean Structures

[+] Author and Article Information
Teng Zhang

Department of Mechanical and
Aerospace Engineering,
Syracuse University,
Syracuse, NY 13244
e-mail: tzhang48@syr.edu

1Corresponding author.

Manuscript received April 2, 2017; final manuscript received April 26, 2017; published online May 15, 2017. Editor: Yonggang Huang.

J. Appl. Mech 84(7), 071002 (May 15, 2017) (9 pages) Paper No: JAM-17-1177; doi: 10.1115/1.4036613 History: Received April 02, 2017; Revised April 26, 2017

Wrinkles are widely found in natural and engineering structures, ranging from skins to stretchable electronics. However, it is nontrivial to predict wrinkles, especially for complicated structures, such as multilayer or gradient structures. Here, we establish a symplectic analysis framework for the wrinkles and apply it to layered neo-Hookean structures. The symplectic structure enables us to accurately and efficiently solve the eigenvalue problems of wrinkles via the extended Wittrick–Williams (w–W) algorithm. The symplectic analysis is able to exactly predict wrinkles in bi- and triple-layer structures, compared with the benchmark results and finite element simulations. Our findings also shed light on the formation of hierarchical wrinkles

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Genzer, J. , and Groenewold, J. , 2006, “ Soft Matter With Hard Skin: From Skin Wrinkles to Templating and Material Characterization,” Soft Matter, 2(4), pp. 310–323. [CrossRef]
Yang, S. , Khare, K. , and Lin, P. C. , 2010, “ Harnessing Surface Wrinkle Patterns in Soft Matter,” Adv. Funct. Mater., 20(16), pp. 2550–2564. [CrossRef]
Li, B. , Cao, Y.-P. , Feng, X.-Q. , and Gao, H. , 2012, “ Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review,” Soft Matter, 8(21), pp. 5728–5745. [CrossRef]
Wang, Q. , and Zhao, X. , 2016, “ Beyond Wrinkles: Multimodal Surface Instabilities for Multifunctional Patterning,” MRS Bull., 41(2), pp. 115–122. [CrossRef]
Bowden, N. , Brittain, S. , Evans, A. G. , Hutchinson, J. W. , and Whitesides, G. M. , 1998, “ Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer,” Nature, 393(6681), pp. 146–149. [CrossRef]
Moon, M.-W. , Lee, S. H. , Sun, J.-Y. , Oh, K. H. , Vaziri, A. , and Hutchinson, J. W. , 2007, “ Wrinkled Hard Skins on Polymers Created by Focused Ion Beam,” Proc. Natl. Acad. Sci. U.S.A., 104(4), pp. 1130–1133. [CrossRef] [PubMed]
Rogers, J. A. , Someya, T. , and Huang, Y. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Sun, Y. , Choi, W. M. , Jiang, H. , Huang, Y. Y. , and Rogers, J. A. , 2006, “ Controlled Buckling of Semiconductor Nanoribbons for Stretchable Electronics,” Nat. Nanotechnol., 1(3), pp. 201–207. [CrossRef] [PubMed]
Chan, E. P. , Smith, E. J. , Hayward, R. C. , and Crosby, A. J. , 2008, “ Surface Wrinkles for Smart Adhesion,” Adv. Mater., 20(4), pp. 711–716. [CrossRef]
Lin, P.-C. , Vajpayee, S. , Jagota, A. , Hui, C.-Y. , and Yang, S. , 2008, “ Mechanically Tunable Dry Adhesive From Wrinkled Elastomers,” Soft Matter, 4(9), pp. 1830–1835. [CrossRef]
Khare, K. , Zhou, J. , and Yang, S. , 2009, “ Tunable Open-Channel Microfluidics on Soft Poly (Dimethylsiloxane) (PDMS) Substrates With Sinusoidal Grooves,” Langmuir, 25(21), pp. 12794–12799. [CrossRef] [PubMed]
Wang, Q. , Gossweiler, G. R. , Craig, S. L. , and Zhao, X. , 2014, “ Cephalopod-Inspired Design of Electro-Mechano-Chemically Responsive Elastomers for On-Demand Fluorescent Patterning,” Nat. Commun., 5, p. 4899. [CrossRef] [PubMed]
Wu, Z. , Meng, J. , Liu, Y. , Li, H. , and Huang, R. , 2014, “ A State Space Method for Surface Instability of Elastic Layers With Material Properties Varying in Thickness Direction,” ASME J. Appl. Mech., 81(8), p. 081003. [CrossRef]
Dortdivanlioglu, B. , Javili, A. , and Linder, C. , 2017, “ Computational Aspects of Morphological Instabilities Using Isogeometric Analysis,” Comput. Methods Appl. Mech. Eng., 316, pp. 261–279. [CrossRef]
Diab, M. , and Kim, K.-S. , 2014, “ Ruga-Formation Instabilities of a Graded Stiffness Boundary Layer in a Neo-Hookean Solid,” Proc. R. Soc. A., 470(2618), p. 20140218. [CrossRef]
Toh, W. , Ding, Z. , Ng, T. Y. , and Liu, Z. , 2015, “ Wrinkling of a Polymeric Gel During Transient Swelling,” ASME J. Appl. Mech., 82(6), p. 061004. [CrossRef]
Liu, J. , and Bertoldi, K. , 2015, “ Bloch Wave Approach for the Analysis of Sequential Bifurcations in Bilayer Structures,” Proc. R. Soc. A, 471(2182), p. 20150493. [CrossRef]
Brau, F. , Vandeparre, H. , Sabbah, A. , Poulard, C. , Boudaoud, A. , and Damman, P. , 2011, “ Multiple-Length-Scale Elastic Instability Mimics Parametric Resonance of Nonlinear Oscillators,” Nat. Phys., 7(1), pp. 56–60. [CrossRef]
Stoop, N. , Lagrange, R. , Terwagne, D. , Reis, P. M. , and Dunkel, J. , 2015, “ Curvature-Induced Symmetry Breaking Determines Elastic Surface Patterns,” Nat. Mater., 14(3), pp. 337–342. [CrossRef] [PubMed]
Xu, F. , and Potier-Ferry, M. , 2016, “ A Multi-Scale Modeling Framework for Instabilities of Film/Substrate Systems,” J. Mech. Phys. Solids, 86, pp. 150–172. [CrossRef]
Cao, Y. , and Hutchinson, J. W. , 2012, “ From Wrinkles to Creases in Elastomers: The Instability and Imperfection-Sensitivity of Wrinkling,” Proc. R. Soc. A, 468(2137), pp. 94–115. [CrossRef]
Fu, Y. , and Cai, Z. , 2015, “ An Asymptotic Analysis of the Period-Doubling Secondary Bifurcation in a Film/Substrate Bilayer,” SIAM J. Appl. Math., 75(6), pp. 2381–2395. [CrossRef]
Wang, Q. , and Zhao, X. , 2013, “ Phase Diagrams of Instabilities in Compressed Film-Substrate Systems,” ASME J. Appl. Mech., 81(5), p. 051004. [CrossRef]
Wang, Q. , and Zhao, X. , 2015, “ A Three-Dimensional Phase Diagram of Growth-Induced Surface Instabilities,” Sci. Rep., 5(1), p. 8887. [CrossRef] [PubMed]
Cao, Y. , and Hutchinson, J. W. , 2012, “ Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers,” ASME J. Appl. Mech., 79(3), p. 031019. [CrossRef]
Cai, S. , Breid, D. , Crosby, A. J. , Suo, Z. , and Hutchinson, J. W. , 2011, “ Periodic Patterns and Energy States of Buckled Films on Compliant Substrates,” J. Mech. Phys. Solids, 59(5), pp. 1094–1114. [CrossRef]
Huang, Z. , Hong, W. , and Suo, Z. , 2005, “ Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate,” J. Mech. Phys. Solids, 53(9), pp. 2101–2118. [CrossRef]
Huang, R. , 2005, “ Kinetic Wrinkling of an Elastic Film on a Viscoelastic Substrate,” J. Mech. Phys. Solids, 53(1), pp. 63–89. [CrossRef]
Chen, X. , and Hutchinson, J. W. , 2004, “ Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates,” ASME J. Appl. Mech., 71(5), pp. 597–603. [CrossRef]
Budday, S. , Kuhl, E. , and Hutchinson, J. W. , 2015, “ Period-Doubling and Period-Tripling in Growing Bilayered Systems,” Philos. Mag., 95(28–30), pp. 3208–3224. [CrossRef]
Ciarletta, P. , Balbi, V. , and Kuhl, E. , 2014, “ Pattern Selection in Growing Tubular Tissues,” Phys. Rev. Lett., 113(24), p. 248101. [CrossRef] [PubMed]
Xu, F. , Potier-Ferry, M. , Belouettar, S. , and Cong, Y. , 2014, “ 3D Finite Element Modeling for Instabilities in Thin Films on Soft Substrates,” Int. J. Solids Struct., 51(21), pp. 3619–3632. [CrossRef]
Lejeune, E. , Javili, A. , Weickenmeier, J. , Kuhl, E. , and Linder, C. , 2016, “ Tri-Layer Wrinkling as a Mechanism for Anchoring Center Initiation in the Developing Cerebellum,” Soft Matter, 12(25), pp. 5613–5620. [CrossRef] [PubMed]
Cao, Y.-P. , Jia, F. , Zhao, Y. , Feng, X.-Q. , and Yu, S.-W. , 2012, “ Buckling and Post-Buckling of a Stiff Film Resting on an Elastic Graded Substrate,” Int. J. Solids Struct., 49(13), pp. 1656–1664. [CrossRef]
Yin, J. , Cao, Z. , Li, C. , Sheinman, I. , and Chen, X. , 2008, “ Stress-Driven Buckling Patterns in Spheroidal Core/Shell Structures,” Proc. Natl. Acad. Sci. U.S.A., 105(49), pp. 19132–19135. [CrossRef] [PubMed]
Yin, J. , Yagüe, J. L. , Eggenspieler, D. , Gleason, K. K. , and Boyce, M. C. , 2012, “ Deterministic Order in Surface Micro‐Topologies Through Sequential Wrinkling,” Adv. Mater., 24(40), pp. 5441–5446. [CrossRef] [PubMed]
Zhao, R. , Zhang, T. , Diab, M. , Gao, H. , and Kim, K.-S. , 2015, “ The Primary Bilayer Ruga-Phase Diagram I: Localizations in Ruga Evolution,” Extreme Mech. Lett., 4, pp. 76–82. [CrossRef]
Jin, L. , Takei, A. , and Hutchinson, J. W. , 2015, “ Mechanics of Wrinkle/Ridge Transitions in Thin Film/Substrate Systems,” J. Mech. Phys. Solids, 81, pp. 22–40. [CrossRef]
Zhao, R. , Diab, M. , and Kim, K.-S. , 2016, “ The Primary Bilayer Ruga-Phase Diagram II: Irreversibility in Ruga Evolution,” ASME J. Appl. Mech., 83(9), p. 091004. [CrossRef]
Jin, L. , Auguste, A. , Hayward, R. C. , and Suo, Z. , 2015, “ Bifurcation Diagrams for the Formation of Wrinkles or Creases in Soft Bilayers,” ASME J. Appl. Mech., 82(6), p. 061008. [CrossRef]
Breid, D. , and Crosby, A. J. , 2011, “ Effect of Stress State on Wrinkle Morphology,” Soft Matter, 7(9), pp. 4490–4496. [CrossRef]
Guvendiren, M. , Burdick, J. A. , and Yang, S. , 2010, “ Solvent Induced Transition From Wrinkles to Creases in Thin Film Gels With Depth-Wise Crosslinking Gradients,” Soft Matter, 6(22), pp. 5795–5801. [CrossRef]
Hou, J. , Li, Q. , Han, X. , and Lu, C. , 2014, “ Swelling/Deswelling-Induced Reversible Surface Wrinkling on Layer-by-Layer Multilayers,” J. Phys. Chem. B, 118(49), pp. 14502–14509. [CrossRef] [PubMed]
Efimenko, K. , Rackaitis, M. , Manias, E. , Vaziri, A. , Mahadevan, L. , and Genzer, J. , 2005, “ Nested Self-Similar Wrinkling Patterns in Skins,” Nat. Mater., 4(4), pp. 293–297. [CrossRef] [PubMed]
Diab, M. , Zhang, T. , Zhao, R. , Gao, H. , and Kim, K.-S. , 2013, “ Ruga Mechanics of Creasing: From Instantaneous to Setback Creases,” Proc. R. Soc. A, 469(2157), p. 20120753. [CrossRef]
Li, B. , Cao, Y.-P. , Feng, X.-Q. , and Gao, H. , 2011, “ Surface Wrinkling of Mucosa Induced by Volumetric Growth: Theory, Simulation and Experiment,” J. Mech. Phys. Solids, 59(4), pp. 758–774. [CrossRef]
Amar, M. B. , and Ciarletta, P. , 2010, “ Swelling Instability of Surface-Attached Gels as a Model of Soft Tissue Growth Under Geometric Constraints,” J. Mech. Phys. Solids, 58(7), pp. 935–954. [CrossRef]
Biot, M. A. , 1965, Mechanics of Incremental Deformations, Wiley, New York.
Cai, Z. , and Fu, Y. , 1999, “ On the Imperfection Sensitivity of a Coated Elastic Half-Space,” Proc. R. Soc. A, 455(1989), pp. 3285–3309. [CrossRef]
Wu, Z. , Bouklas, N. , Liu, Y. , and Huang, R. , 2017, “ Onset of Swell-Induced Surface Instability of Hydrogel Layers With Depth-Wise Graded Material Properties,” Mech. Mater., 105, pp. 138–147. [CrossRef]
Moler, C. , and Van Loan, C. , 2003, “ Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” SIAM Rev., 45(1), pp. 3–49. [CrossRef]
Yao, W. , Zhong, W. , and Lim, C. W. , 2009, Symplectic Elasticity, World Scientific, Singapore.
Yao, W. , and Yang, H. , 2001, “ Hamiltonian System Based Saint Venant Solutions for Multi-Layered Composite Plane Anisotropic Plates,” Int. J. Solids Struct., 38(32), pp. 5807–5817. [CrossRef]
Li, R. , Wang, B. , Li, G. , and Tian, B. M. , 2016, “ Hamiltonian System-Based Analytic Modeling of the Free Rectangular Thin Plates' Free Vibration,” Appl. Math. Model., 40(2), pp. 984–992. [CrossRef]
Li, R. , Wang, B. , Lv, Y. , Zhang, Q. , Wang, H. , Jin, F. , Teng, F. , and Wang, B. , 2017, “ New Analytic Solutions for Static Problems of Rectangular Thin Plates Point-Supported at Three Corners,” Meccanica, 52(7), p. 1593.
Li, R. , Tian, Y. , Wang, P. , Shi, Y. , and Wang, B. , 2016, “ New Analytic Free Vibration Solutions of Rectangular Thin Plates Resting on Multiple Point Supports,” Int. J. Mech. Sci., 110, pp. 53–61. [CrossRef]
Wang, B. , Li, P. , and Li, R. , 2016, “ Symplectic Superposition Method for New Analytic Buckling Solutions of Rectangular Thin Plates,” Int. J. Mech. Sci., 119, pp. 432–441. [CrossRef]
Xu, X. , Ma, Y. , Lim, C. , and Chu, H. , 2006, “ Dynamic Buckling of Cylindrical Shells Subject to an Axial Impact in a Symplectic System,” Int. J. Solids Struct., 43(13), pp. 3905–3919. [CrossRef]
Gao, Q. , Lin, J. , Zhong, W. , Howson, W. P. , and Williams, F. W. , 2006, “ A Precise Numerical Method for Rayleigh Waves in a Stratified Half Space,” Int. J. Numer. Methods Eng., 67(6), pp. 771–786. [CrossRef]
Gao, Q. , Zhong, W. , and Howson, W. , 2004, “ A Precise Method for Solving Wave Propagation Problems in Layered Anisotropic Media,” Wave Motion, 40(3), pp. 191–207. [CrossRef]
Liu, L. , and Bhattacharya, K. , 2009, “ Wave Propagation in a Sandwich Structure,” Int. J. Solids Struct., 46(17), pp. 3290–3300. [CrossRef]
Zhong, W. , Williams, F. W. , and Bennett, P. , 1997, “ Extension of the Wittrick-Williams Algorithm to Mixed Variable Systems,” ASME J. Vib. Acoust., 119, pp. 334–340. [CrossRef]
Sun, J.-Y. , Xia, S. , Moon, M.-W. , Oh, K. H. , and Kim, K.-S. , 2012, “ Folding Wrinkles of a Thin Stiff Layer on a Soft Substrate,” Proc. R. Soc. A, 468(2140), pp. 932–953. [CrossRef]
Hughes, T. J. , 2000, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, Mineola, NY.
Lejeune, E. , Javili, A. , and Linder, C. , 2016, “ An Algorithmic Approach to Multi-Layer Wrinkling,” Extreme Mech. Lett., 7, pp. 10–17. [CrossRef]
Jia, F. , Cao, Y.-P. , Liu, T.-S. , Jiang, Y. , Feng, X.-Q. , and Yu, S.-W. , 2012, “ Wrinkling of a Bilayer Resting on a Soft Substrate Under In-Plane Compression,” Philos. Mag., 92(12), pp. 1554–1568. [CrossRef]
Zhao, R. , 2016, “ A Mechanics Study on Surface Ruga Morphologies of Soft Materials,” Ph.D. thesis, Brown University, Providence, RI.

Figures

Grahic Jump Location
Fig. 1

Schematics of wrinkles in a bilayer structure: (a) flat structure at the stress-free state and (b) wrinkling under compression or film swelling

Grahic Jump Location
Fig. 2

Schematics of a quad-layer structure with triple-layer films (films 1–3) adhered on a semi-infinite substitute. A pseudo-time variable t is used to describe the effective dynamics system. The state variables at each interface are also labeled.

Grahic Jump Location
Fig. 3

Determine the critical strain and wavenumber of wrinkle through symplectic analysis: (a) Search the critical strain for a given wavenumber by identifying the jump of eigenvalue count, and (b) the minimum strain for all the possible wavenumber is the critical wrinkle strain εw and the associated wavenumber is the critical wrinkle wavenumber kw

Grahic Jump Location
Fig. 4

Boundary value problem defined by state variables and the combination of two consecutive intervals into a larger interval

Grahic Jump Location
Fig. 5

2N algorithm for calculating the eigenvalue count Jm and F,G, and Q matrices for film j

Grahic Jump Location
Fig. 6

(a) Critical wrinkle wavenumber as a function of modulus mismatch ratio (film thickness is one) and (b) critical wrinkle strain as a function of modulus mismatch ratio

Grahic Jump Location
Fig. 7

(a) Critical wrinkle wavenumber as a function of prestretch (film thickness is 1) and (b) critical wrinkle strain as a function of prestretch. Modulus mismatch ratio is 1000.

Grahic Jump Location
Fig. 8

Symplectic analysis for wrinkles of tripe-layer structure: (a) schematic of a triple-layer structure for the modeling and analysis. Films 1 (top red) and 2 (intermediate orange) are adhered on a semi-infinite substrate (bottom blue). In the text, we also denote the films 1 and 2 as top and intermediate films to avoid confusions with other numbers, (b) relation between given wavenumber and critical strain for instability for μ2=8.37, (c) the long and short wavelengths varying with the normalized modulus of the intermediate film, and (d) wrinkle strains for the triple-layer structure predicted from symplectic analysis and FEM simulations (see color figure online).

Grahic Jump Location
Fig. 9

FEM snapshots for wrinkle patterns of a triple-layer neo-Hookean structure with different μ2: (a) μ2/μs=4, (b) μ2/μs=8.37, and (c) μ2/μs=500. Scale bar is 100.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In