Research Papers

Patterning Curved Three-Dimensional Structures With Programmable Kirigami Designs

[+] Author and Article Information
Fei Wang, Xiaogang Guo, Jingxian Xu, Yihui Zhang

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China

C. Q. Chen

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China
e-mail: chencq@tsinghua.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received March 17, 2017; final manuscript received April 11, 2017; published online April 24, 2017. Editor: Yonggang Huang.

J. Appl. Mech 84(6), 061007 (Apr 24, 2017) (7 pages) Paper No: JAM-17-1155; doi: 10.1115/1.4036476 History: Received March 17, 2017; Revised April 11, 2017

Originated from the art of paper cutting and folding, kirigami and origami have shown promising applications in a broad range of scientific and engineering fields. Developments of kirigami-inspired inverse design methods that map target three-dimensional (3D) geometries into two-dimensional (2D) patterns of cuts and creases are desired to serve as guidelines for practical applications. In this paper, using programed kirigami tessellations, we propose two design methods to approximate the geometries of developable surfaces and nonzero Gauss curvature surfaces with rotational symmetry. In the first method, a periodic array of kirigami pattern with spatially varying geometric parameters is obtained, allowing formation of developable surfaces of desired curvature distribution and thickness, through controlled shrinkage and bending deformations. In the second method, another type of kirigami tessellations, in combination with Miura origami, is proposed to approximate nondevelopable surfaces with rotational symmetry. Both methods are validated by experiments of folding patterned thin copper films into desired 3D structures. The mechanical behaviors of the kirigami designs are investigated using analytical modeling and finite element simulations. The proposed methods extend the design space of mechanical metamaterials and are expected to be useful for kirigami-inspired applications.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Felton, S. , Tolley, M. , Demaine, E. , Rus, D. , and Wood, R. , 2014, “ A Method for Building Self-Folding Machines,” Science, 345(6197), pp. 644–646. [CrossRef] [PubMed]
Filipov, E. T. , Tachi, T. , and Paulino, G. H. , 2015, “ Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials,” Proc. Natl. Acad. Sci., 112(40), pp. 12321–12326. [CrossRef]
Lang, R. J. , 1996, “ A Computational Algorithm for Origami Design,” 12th Annual Symposium on Computational Geometry (SOCG '96), Philadelphia, PA, May 24–26, pp. 98–105.
Seffen, K. A. , and Stott, S. V. , 2014, “ Surface Texturing Through Cylinder Buckling,” ASME J. Appl. Mech., 81(6), p. 061001. [CrossRef]
Blees, M. K. , Barnard, A. W. , Rose, P. A. , Roberts, S. P. , McGill, K. L. , Huang, P. Y. , Ruyack, A. R. , Kevek, J. W. , Kobrin, B. , Muller, D. A. , and McEuen, P. L. , 2015, “ Graphene Kirigami,” Nature, 524(7564), pp. 204–207. [CrossRef] [PubMed]
Sussman, D. M. , Cho, Y. , Castle, T. , Gong, X. , Jung, E. , Yang, S. , and Kamien, R. D. , 2015, “ Algorithmic Lattice Kirigami: A Route to Pluripotent Materials,” Proc. Natl. Acad. Sci., 112(24), pp. 7449–7453. [CrossRef]
Safsten, C. , Fillmore, T. , Logan, A. , Halverson, D. , and Howell, L. , 2016, “ Analyzing the Stability Properties of Kaleidocycles,” ASME J. Appl. Mech., 83(5), p. 051001. [CrossRef]
Silverberg, J. L. , Na, J.-H. , Evans, A. A. , Liu, B. , Hull, T. C. , Santangelo, C. D. , Lang, R. J. , Hayward, R. C. , and Cohen, I. , 2015, “ Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom,” Nat. Mater., 14(4), pp. 389–393. [CrossRef] [PubMed]
Hawkes, E. , An, B. , Benbernou, N. M. , Tanaka, H. , Kim, S. , Demaine, E. D. , Rus, D. , and Wood, R. J. , 2010, “ Programmable Matter by Folding,” Proc. Natl. Acad. Sci., 107(28), pp. 12441–12445. [CrossRef]
Lamoureux, A. , Lee, K. , Shlian, M. , Forrest, S. R. , and Shtein, M. , 2015, “ Dynamic Kirigami Structures for Integrated Solar Tracking,” Nat. Commun., 6, p. 8092. [CrossRef] [PubMed]
Hanna, B. H. , Magleby, S. P. , Lang, R. J. , and Howell, L. L. , 2015, “ Force–Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms,” ASME J. Appl. Mech., 82(8), p. 081001. [CrossRef]
Overvelde, J. T. B. , Weaver, J. C. , Hoberman, C. , and Bertoldi, K. , 2017, “ Rational Design of Reconfigurable Prismatic Architected Materials,” Nature, 541(7637), pp. 347–352. [CrossRef] [PubMed]
Yan, Z. , Zhang, F. , Wang, J. , Liu, F. , Guo, X. , Nan, K. , Lin, Q. , Gao, M. , Xiao, D. , Shi, Y. , Qiu, Y. , Luan, H. , Kim, J. H. , Wang, Y. , Luo, H. , Han, M. , Huang, Y. , Zhang, Y. , and Rogers, J. A. , 2016, “ Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials,” Adv. Funct. Mater., 26(16), pp. 2629–2639. [CrossRef] [PubMed]
Yasuda, H. , and Yang, J. , 2015, “ Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability,” Phys. Rev. Lett., 114(18), p. 185502. [CrossRef] [PubMed]
Overvelde, J. T. B. , de Jong, T. A. , Shevchenko, Y. , Becerra, S. A. , Whitesides, G. M. , Weaver, J. C. , Hoberman, C. , and Bertoldi, K. , 2016, “ A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom,” Nat. Commun., 7, p. 10929. [CrossRef] [PubMed]
Tang, R. , Huang, H. , Tu, H. , Liang, H. , Liang, M. , Song, Z. , Xu, Y. , Jiang, H. , and Yu, H. , 2014, “ Origami-Enabled Deformable Silicon Solar Cells,” Appl. Phys. Lett., 104(8), p. 083501. [CrossRef]
Song, Z. , Ma, T. , Tang, R. , Cheng, Q. , Wang, X. , Krishnaraju, D. , Panat, R. , Chan, C. K. , Yu, H. , and Jiang, H. , 2014, “ Origami Lithium-Ion Batteries,” Nat. Commun., 5, p. 3140. [PubMed]
Bassik, N. , Stern, G. M. , and Gracias, D. H. , 2009, “ Microassembly Based on Hands Free Origami With Bidirectional Curvature,” Appl. Phys. Lett., 95(9), p. 091901. [CrossRef]
Xu, S. , Yan, Z. , Jang, K.-I. , Huang, W. , Fu, H. , Kim, J. , Wei, Z. , Flavin, M. , McCracken, J. , Wang, R. , Badea, A. , Liu, Y. , Xiao, D. , Zhou, G. , Lee, J. , Chung, H. U. , Cheng, H. , Ren, W. , Banks, A. , Li, X. , Paik, U. , Nuzzo, R. G. , Huang, Y. , Zhang, Y. , and Rogers, J. A. , 2015, “ Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling,” Science, 347(6218), pp. 154–159. [CrossRef] [PubMed]
Laflin, K. E. , Morris, C. J. , Muqeem, T. , and Gracias, D. H. , 2012, “ Laser Triggered Sequential Folding of Microstructures,” Appl. Phys. Lett., 101(13), p. 131901. [CrossRef]
Zhang, Y. , Yan, Z. , Nan, K. , Xiao, D. , Liu, Y. , Luan, H. , Fu, H. , Wang, X. , Yang, Q. , Wang, J. , Ren, W. , Si, H. , Liu, F. , Yang, L. , Li, H. , Wang, J. , Guo, X. , Luo, H. , Wang, L. , Huang, Y. , and Rogers, J. A. , 2015, “ A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes,” Proc. Natl. Acad. Sci., 112(38), pp. 11757–11764. [CrossRef]
Ma, J. , and You, Z. , 2014, “ Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation,” ASME J. Appl. Mech., 81(1), p. 011003. [CrossRef]
Chen, B. G. , Liu, B. , Evans, A. A. , Paulose, J. , Cohen, I. , Vitelli, V. , and Santangelo, C. D. , 2016, “ Topological Mechanics of Origami and Kirigami,” Phys. Rev. Lett., 116(13), p. 135501. [CrossRef] [PubMed]
Chen, Y. , Peng, R. , and You, Z. , 2015, “ Origami of Thick Panels,” Science, 349(6246), pp. 396–400. [CrossRef] [PubMed]
Sareh, S. , and Rossiter, J. , 2013, “ Kirigami Artificial Muscles With Complex Biologically Inspired Morphologies,” Smart Mater. Struct., 22(1), p. 014004. [CrossRef]
Hanna, B. H. , Lund, J. M. , Lang, R. J. , Magleby, S. P. , and Howell, L. L. , 2014, “ Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism,” Smart Mater. Struct., 23(9), p. 094009. [CrossRef]
Schenk, M. , and Guest, S. D. , 2013, “ Geometry of Miura-Folded Metamaterials,” Proc. Natl. Acad. Sci., 110(9), pp. 3276–3281. [CrossRef]
Wei, Z. Y. , Guo, Z. V. , Dudte, L. , Liang, H. Y. , and Mahadevan, L. , 2013, “ Geometric Mechanics of Periodic Pleated Origami,” Phys. Rev. Lett., 110(21), p. 215501. [CrossRef] [PubMed]
Florijn, B. , Coulais, C. , and van Hecke, M. , 2014, “ Programmable Mechanical Metamaterials,” Phys. Rev. Lett., 113(17), p. 175503. [CrossRef] [PubMed]
Eidini, M. , and Paulino, G. H. , 2015, “ Unraveling Metamaterial Properties in Zigzag-Base Folded Sheets,” Sci. Adv., 1(8), p. e1500224. [CrossRef] [PubMed]
Brunck, V. , Lechenault, F. , Reid, A. , and Adda-Bedia, M. , 2016, “ Elastic Theory of Origami-Based Metamaterials,” Phys. Rev. E, 93(3), p. 033005. [CrossRef] [PubMed]
Zhou, X. , Wang, H. , and You, Z. , 2015, “ Design of Three-Dimensional Origami Structures Based on a Vertex Approach,” Proc. R. Soc. Math. Phys. Eng. Sci., 471(2181), p. 20150407. [CrossRef]
Dudte, L. H. , Vouga, E. , Tachi, T. , and Mahadevan, L. , 2016, “ Programming Curvature Using Origami Tessellations,” Nat. Mater., 15(5), pp. 583–588. [CrossRef] [PubMed]
Tachi, T. , 2013, “ Designing Freeform Origami Tessellations by Generalizing Resch's Patterns,” ASME J. Mech. Des., 135(11), p. 111006. [CrossRef]
Tachi, T. , 2010, “ Freeform Variations of Origami,” J. Geom. Graph., 14(2), pp. 203–215.
Castle, T. , Sussman, D. M. , Tanis, M. , and Kamien, R. D. , 2016, “ Additive Lattice Kirigami,” Sci. Adv., 2(9), p. e1601258. [CrossRef] [PubMed]
Nojima, T. , and Saito, K. , 2006, “ Development of Newly Designed Ultralight Core Structures,” Int. J. Ser. Solid Mech. Mater. Eng., 49(1), pp. 38–42.
Shyu, T. C. , Damasceno, P. F. , Dodd, P. M. , Lamoureux, A. , Xu, L. , Shlian, M. , Shtein, M. , Glotzer, S. C. , and Kotov, N. A. , 2015, “ A Kirigami Approach to Engineering Elasticity in Nanocomposites Through Patterned Defects,” Nat. Mater., 14(8), pp. 785–789. [CrossRef] [PubMed]
Qi, Z. , Campbell, D. K. , and Park, H. S. , 2014, “ Atomistic Simulations of Tension-Induced Large Deformation and Stretchability in Graphene Kirigami,” Phys. Rev. B, 90(24), p. 245437. [CrossRef]
Castle, T. , Cho, Y. , Gong, X. , Jung, E. , Sussman, D. M. , Yang, S. , and Kamien, R. D. , 2014, “ Making the Cut: Lattice Kirigami Rules,” Phys. Rev. Lett., 113(24), p. 245502. [CrossRef] [PubMed]
Cho, Y. , Shin, J.-H. , Costa, A. , Kim, T. A. , Kunin, V. , Li, J. , Lee, S. Y. , Yang, S. , Han, H. N. , Choi, I.-S. , and Srolovitz, D. J. , 2014, “ Engineering the Shape and Structure of Materials by Fractal Cut,” Proc. Natl. Acad. Sci., 111(49), pp. 17390–17395. [CrossRef]
Xie, R. , Chen, Y. , and Gattas, J. M. , 2015, “ Parametrisation and Application of Cube and Eggbox-Type Folded Geometries,” Int. J. Space Struct., 30(2), pp. 99–110. [CrossRef]
Lv, C. , Krishnaraju, D. , Konjevod, G. , Yu, H. , and Jiang, H. , 2014, “ Origami Based Mechanical Metamaterials,” Sci. Rep., 4, p. 5979. [PubMed]
Schenk, M. , and Guest, S. D. , 2011, “ Origami Folding: A Structural Engineering Approach,” Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, CRC Press, Boca Raton, FL, pp. 291–303.
Silverberg, J. L. , Evans, A. A. , McLeod, L. , Hayward, R. C. , Hull, T. , Santangelo, C. D. , and Cohen, I. , 2014, “ Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials,” Science, 345(6197), pp. 647–650. [CrossRef] [PubMed]
Kim, J. , Hanna, J. A. , Byun, M. , Santangelo, C. D. , and Hayward, R. C. , 2012, “ Designing Responsive Buckled Surfaces by Halftone Gel Lithography,” Science, 335(6073), pp. 1201–1205. [CrossRef] [PubMed]
Guo, X. , Li, H. , Ahn, B. Y. , Duoss, E. B. , Hsia, K. J. , Lewis, J. A. , and Nuzzo, R. G. , 2009, “ Two-and Three-Dimensional Folding of Thin Film Single-Crystalline Silicon for Photovoltaic Power Applications,” Proc. Natl. Acad. Sci., 106(48), pp. 20149–20154. [CrossRef]
Wang, F. , Gong, H. , Chen, X. , and Chen, C. Q. , 2016, “ Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-Based Cylindrical Structures,” Sci. Rep., 6(1), p. 33312. [CrossRef] [PubMed]
Gattas, J. M. , Wu, W. , and You, Z. , 2013, “ Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries,” ASME J. Mech. Des., 135(11), p. 111011. [CrossRef]


Grahic Jump Location
Fig. 1

Design of developable surfaces using kirigami tessellations: (a) the target cylindrical surface and (b) the kirigami array approximating the surface (front view). A piecewise-linear curve passes through Pi (i=1, 2, 3...): (c) the kirigami array before bending (front view), which is the last configuration of step 1 and (d)–(g) folding process of the kirigami array. (d) → (e) → (f): step 1, shrinkage of the array. (f) → (g): step 2, bending of the array, (h)–(k) kinematics of eight quadrilaterals surrounding one rhombus cut during folding, corresponding to (d)–(g), rectangular plates labeled by l are kept coplanar during step 1, whereas plates labeled by II and III inclined. The four sides of the rhombus coincide into one line after folding.

Grahic Jump Location
Fig. 2

Examples of programmable kirigami designs for developable surfaces. Each example shows the target surface, the kirigami approximation by the algorithm, the experimental result with copper film, and the corresponding 2D tessellation: (a) unit to make the 3D array bendable in step 2. αi (i=1,2,3,4) alternate between acute and obtuse angle in both x and y directions, that is, α1,α3∈(0, 90 deg), whereas α2,α4∈(90 deg, 180 deg), (b) a semicircle as the planar curve, in which all the cut out rhombuses are made identical and uniformly distributed, (c) a sinusoid as the planar curve with continuously varying curvature, (d) an equiangular spiral as the planar curve with continuously varying curvature, and (e) a helical surface. The scale bars in the experiments are 10 mm.

Grahic Jump Location
Fig. 3

Analytical and FEA predicted elastic responses of a 5×5 kirigami array during shrinking: (a) the geometric model and (b) kirigami array's auxetic feature for α=75 deg, characterized with negative Poisson's ratio νyx. (c) Normalized in-plane force F̃ in the x and y directions versus θ. The adopted parameters are α=60  deg, initial state θ0=45  deg, and a1:b:l=1:1:1. The insets illustrate FEA predicted configurations at θ=0  deg, 45  deg, and 90  deg, respectively, (d) load ratio c=F̃x/F̃y for α=40 deg and 90 deg, and (e) contour plot of the instantaneous stiffness Kx in the θ0−α space. The black-dashed curve shows the optimized design path to obtain the minimum of Kx.

Grahic Jump Location
Fig. 4

Design of nondevelopable surfaces using Miura-ori based kirigami patterns: (a) a Miura-ori 2D pattern and its folded configuration, (b) illustration of the algorithm using a spherical surface as an example, in which a piecewise-linear curve P1P2⋯Pn+1¯ (i=1,2...n+1) is used to approximate the generatrix, and (c) the virtual 2D patterns and real 3D origami strip to approximate a part of the spherical surface

Grahic Jump Location
Fig. 7

Variation of the number of quadrilaterals needed to approximate the surface as the number of vertexes changes: (a) α decreases with increasing θ, (b) the number of quadrilaterals needed increases rapidly with increasing number of vertexes, by taking a spherical surface as an example, and (c) comparison of the accuracy and complexity when 8 and 12 vertexes are picked, respectively

Grahic Jump Location
Fig. 6

(a) A quadrilateral used to construct the surfaces with rotational symmetry. The upper limit of height h is determined by its angles αi−1 and αi and the length of Pi−1Pi¯ and (b) the origami strip units in the circumferential direction before and after cutting.

Grahic Jump Location
Fig. 5

Examples of programmable kirigami designs for nonzero Gauss curvature surfaces with rotational symmetry. Each example shows the target surface, the kirigami approximation by the algorithm, the experimental result with copper film, and the corresponding 2D tessellation: (a) arc-pattern of Miura-ori is used to approximate a piece of revolution surface, analogous to the cyclotomic method, (b) spherical surface, (c) hyperboloid, and (d) torus. The scale bars in the experiments are 10 mm.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In