Pride,
S. R.
,
Berryman,
J. G.
, and
Harris,
J. M.
, 2004, “
Seismic Attenuation Due to Wave-Induced Flow,” J. Geophys. Res.,
109(B1), p. B01201.

[CrossRef]
Müller,
T. M.
,
Gurevich,
B.
, and
Lebedev,
M.
, 2010, “
Seismic Wave Attenuation and Dispersion Resulting From Wave-Induced Flow in Porous Rocks—A Review,” Geophysics,
75(5), pp. 75A147–75A164.

[CrossRef]
Pride,
S. R.
, and
Berryman,
J. G.
, 2003, “
Linear Dynamics of Double-Porosity and Dual-Permeability Materials—I: Governing Equations and Acoustic Attenuation,” Phys. Rev. E,
68(3), p. 036603.

[CrossRef]
Pride,
S. R.
, and
Berryman,
J. G.
, 2003, “
Linear Dynamics of Double-Porosity and Dual-Permeability Materials—II: Fluid Transport Equations,” Phys. Rev. E,
68(3), p. 036604.

[CrossRef]
Wilson,
R. K.
, and
Aifantis,
E. C.
, 1984, “
A Double Porosity Model for Acoustic Wave Propagation in Fractured-Porous Rock,” Int. J. Eng. Sci.,
22(8–10), pp. 1209–1217.

[CrossRef]
Auriault,
J. L.
, and
Boutin,
C.
, 1994, “
Deformable Porous Media With Double Porosity—III: Acoustics,” Transp. Porous Media,
14(2), pp. 143–162.

[CrossRef]
Tuncay,
K.
, and
Corapcioglu,
M. Y.
, 1996, “
Wave Propagation in Fractured Porous Media,” Transp. Porous Media,
23(3), pp. 237–258.

Corapcioglu,
M. Y.
, and
Tuncay,
K.
, 1998, “
Wave Propagation in Fractured Porous Media Saturated by Two Immiscible Fluids,” Poromechanics: A Tribute to Maurice A Biot,
J. F. Thimus
,
Y. Abousleiman
,
A. H.-D. Cheng
,
O. Coussy
, and
E. Detournay
, eds.,
Balkema,
Rotterdam, The Netherlands, pp. 197–203.

Olny,
X.
, and
Boutin,
C.
, 2003, “
Acoustic Wave Propagation in Double Porosity Media,” J. Acoust. Soc. Am.,
114(1), pp. 73–89.

[CrossRef] [PubMed]
Berryman,
J. G.
, and
Wang,
H. F.
, 2000, “
Elastic Wave Propagation and Attenuation in a Double-Porosity Dual-Permeability Medium,” Int. J. Rock Mech. Min. Sci.,
37(1–2), pp. 63–78.

[CrossRef]
Ba,
J.
,
Carcione,
J. M.
, and
Nie,
J. X.
, 2011, “
Biot-Rayleigh Theory of Wave Propagation in Double-Porosity Media,” J. Geophys. Res.,
116(B6), p. B06202.

[CrossRef]
Biot,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid—I: Low-Frequency Range,” J. Acoust. Soc. Am.,
28(2), pp. 168–178.

[CrossRef]
Biot,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid—II: Higher-Frequency Range,” J. Acoust. Soc. Am.,
28(2), pp. 179–191.

[CrossRef]
Vgenopoulou,
I.
, and
Beskos,
D. E.
, 1992, “
Dynamics of Saturated Rocks—IV: Column and Borehole Problems,” J. Eng. Mech.,
118(9), pp. 1795–1813.

[CrossRef]
Zheng,
P.
, and
Cheng,
A. H.-D.
, 2017, “
One-Dimensional Analytical Solution for Mesoscopic Flow Induced Damping in a Double-Porosity Dual-Permeability Material,” Int. J. Numer. Anal. Methods Geomech., epub.

Beskos,
D. E.
,
Vgenopoulou,
I.
, and
Providakis,
C. P.
, 1989, “
Dynamics of Saturated Rocks—II: Body Waves,” J. Eng. Mech.,
115(5), pp. 996–1016.

[CrossRef]
Beskos,
D. E.
,
Papadakis,
C. N.
, and
Woo,
H. S.
, 1989, “
Dynamics of Saturated Rocks—III: Rayleigh Waves,” J. Eng. Mech.,
115(5), pp. 1017–1034.

[CrossRef]
Dai,
Z.-J.
,
Kuang,
Z.-B.
, and
Zhao,
S.-X.
, 2006, “
Rayleigh Waves in a Double Porosity Half-Space,” J. Sound Vib.,
298(1–2), pp. 319–332.

[CrossRef]
Sharma,
M. D.
, 2014, “
Effect of Local Fluid Flow on Rayleigh Waves in a Double Porosity Solids,” Bull. Seismol. Soc. Am.,
104(6), pp. 2633–2643.

[CrossRef]
Zheng,
P.
,
Ding,
B.
, and
Sun,
X.
, 2017, “
Elastic Wave Attenuation and Dispersion Induced by Mesoscopic Flow in Double-Porosity Rocks,” Int. J. Rock Mech. Min. Sci.,
91, pp. 104–111.

Dai,
Z.-J.
,
Kuang,
Z.-B.
, and
Zhao,
S.-X.
, 2006, “
Reflection and Transmission of Elastic Waves at the Interface Between an Elastic Solid and a Double Porosity Medium,” Int. J. Rock Mech. Min. Sci.,
43(6), pp. 961–971.

[CrossRef]
Dai,
Z.-J.
, and
Kuang,
Z.-B.
, 2008, “
Reflection and Transmission of Elastic Waves at the Interface Between Water and a Double Porosity Solid,” Transp. Porous Media,
72(3), pp. 369–392.

[CrossRef]
Sharma,
M. D.
, 2013, “
Effect on Local Fluid Flow on Reflection of Plane Elastic Waves at the Boundary of a Double-Porosity Medium,” Adv. Water Resour.,
61, pp. 62–73.

[CrossRef]
Burridge,
R.
, and
Vargas,
C. A.
, 1979, “
The Fundamental Solution in Dynamic Poroelasticity,” Geophys. J. R. Astron. Soc.,
58(1), pp. 61–90.

[CrossRef]
Norris,
A. N.
, 1985, “
Radiation From a Point Source and Scattering Theory in a Fluid-Saturated Porous Solid,” J. Acoust. Soc. Am.,
77(6), pp. 2012–2023.

[CrossRef]
Bonnet,
G.
, 1987, “
Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range,” J. Acoust. Soc. Am.,
82(5), pp. 1758–1762.

[CrossRef]
Manolis,
G. D.
, and
Beskos,
D. E.
, 1989, “
Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity,” Acta Mech.,
76(1), pp. 89–104.

[CrossRef]
Manolis,
G. D.
, and
Beskos,
D. E.
, 1990, “
Errata in ‘Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity’,” Acta Mech.,
83(3), pp. 223–226.

[CrossRef]
Cheng,
A. H.-D.
,
Badmus,
T.
, and
Beskos,
D. E.
, 1991, “
Integral Equation for Dynamic Poroelasticity in Frequency Domain With BEM Solution,” J. Eng. Mech.,
117(5), pp. 1136–1157.

[CrossRef]
Kaynia,
A. M.
, and
Banerjee,
P. K.
, 1993, “
Fundamental Solutions of Biot's Equations of Dynamic Poroelasticity,” Int. J. Eng. Sci.,
31(5), pp. 817–830.

[CrossRef]
Zimmerman,
C.
, and
Stern,
M.
, 1993, “
Boundary Element Solution of 3-D Wave Scatter Problems in a Poroelastic Medium,” Eng. Anal. Boundary Elem.,
12(4), pp. 223–240.

[CrossRef]
Chen,
J.
, 1994, “
Time Domain Fundamental Solution to Biot's Complete Equations of Dynamic Poroelasticity—Part I: Two-Dimensional Solution,” Int. J. Solids Struct.,
31(2), pp. 1447–1490.

[CrossRef]
Chen,
J.
, 1994, “
Time Domain Fundamental Solution to Biot's Complete Equations of Dynamic Poroelasticity—Part II: Three-Dimensional Solution,” Int. J. Solids Struct.,
31(2), pp. 169–202.

[CrossRef]
Philippacopoulos,
A. J.
, 1998, “
Spectral Green's Dyadic for Point Sources in Poroelastic Media,” J. Eng. Mech.,
124(1), pp. 24–31.

[CrossRef]
Sahay,
P. N.
, 2001, “
Dynamic Green's Function for Homogeneous and Isotropic Porous Media,” Geophys. J. Int.,
147(3), pp. 622–629.

[CrossRef]
Schanz,
M.
, and
Pryl,
D.
, 2004, “
Dynamic Fundamental Solutions for Compressible and Incompressible Modeled Poroelastic Continua,” Int. J. Solids Struct.
41(15), pp. 4047–4073.

[CrossRef]
Lu,
J.-F.
,
Jeng,
D.-S.
, and
Williams,
S.
, 2008, “
A 2.5-D Dynamic Model for a Saturated Porous Medium—Part I: Green's Function,” Int. J. Solids Struct.
45(2), pp. 378–391.

[CrossRef]
Karpfinger,
F.
,
Müller,
T. M.
, and
Gurevich,
B.
, 2009, “
Green's Functions and Radiation Patterns in a Poroelastic Solids Revisited,” Geophys. J. Int.,
178(1), pp. 327–337.

[CrossRef]
Ding,
B.
,
Cheng,
A. H.-D.
, and
Chen,
Z.
, 2013, “
Fundamental Solutions of Poroelastodynamics in Frequency Domain Based on Wave Decomposition,” ASME J. Appl. Mech.,
80(6), p. 061021.

[CrossRef]
Schanz,
M.
, 2009, “
Poroelastodynamics: Linear Models, Analytical Solutions, and Numerical Methods,” ASME Appl. Mech. Rev.,
62(3), p. 030803.

[CrossRef]
Cheng,
A. H.-D.
, 2016, Poroelasticity,
Springer International Publishing,
Berlin, pp. 530–544.

Zheng,
P.
,
Gao,
Z.
, and
Ding,
B.
, 2016, “
The Elastic Coefficients of Double-Porosity Materials: A Revisit,” Transp. Porous Med.,
111(3), pp. 555–571.(Erratum, Transp. Porous Med., 2016; 112(3), pp. 783–784.)

[CrossRef]
Kupradze,
V. D.
, 1979, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
Amsterdam, The Netherlands.

Cheng,
A. H.-D.
, and
Cheng,
D. T.
, 2005, “
Heritage and Early History of the Boundary Element Method,” Eng. Anal. Boundary Elem.,
29(3), pp. 268–302.

[CrossRef]
Predeleanu,
M.
, 1968, “
Reciprocal Theorem in the Consolidation Theory of Porous Media,” An. Univ. Bucuresti, Ser. Stiint. Nat., Mat., Mec.,
17(2), pp. 75–79.

Cleary,
M. P.
, 1977, “
Fundamental Solutions for a Fluid-Saturated Porous Solid,” Int. J. Solids Struct.,
13(9), pp. 785–806.

[CrossRef]
Cheng,
A. H.-D.
, and
Predeleanu,
M.
, 1987, “
Transient Boundary Element Formulation for Linear Poroelasticity,” Appl. Math. Modell.,
11(4), pp. 285–290.

[CrossRef]
Cheng,
A. H.-D.
, and
Detournay,
E.
, 1998, “
On Singular Integral Equations and Fundamental Solutions of Poroelasticity,” Int. J. Solids Struct.,
35(34–35), pp. 4521–4555.

[CrossRef]
Wheeler,
L. T.
, and
Sternberg,
E.
, 1968, “
Some Theorems in Classical Elastodynamics,” Arch. Ration. Mech. Anal.,
31(1), pp. 51–90.

[CrossRef]
Mantic,
V.
, 1993, “
A New Formula for the C-Matrix in the Somigliana Identity,” J. Elasticity,
33(3), pp. 191–201.

[CrossRef]
Chapman,
C.
, 2004, Fundamentals of Seismic Wave Propagation,
Cambridge University Press,
New York, p. 115.

Pride,
S. R.
, and
Haartsen,
M. W.
, 1996, “
Electroseismic Wave Properties,” J. Acoust. Soc. Am.,
100(3), pp. 1301–1315.

[CrossRef]
Gao,
Y.
, and
Hu,
H.
, 2010, “
Seismoelectromagnetic Waves Radiated by a Double Couple Source in a Saturated Porous Medium,” Geophys. J. Int.,
181(2), pp. 873–896.

Wu,
R.-S.
, and
Ben-Menahem,
A.
, 1985, “
The Elastodynamic Near Field,” Geophys. J. R. Astron. Soc.,
81(3), pp. 609–621.

[CrossRef]
Sternberg,
E.
, and
Eubanks,
R. A.
, 1955, “
On the Concept of Concentrated Loads and an Extension of the Uniqueness Theorem in the Linear Theory of Elasticity,” J. Ration. Mech. Anal.,
4(1), pp. 135–168.

Wang,
H. F.
, 2000, Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrology,
Princeton University Press,
Princeton, NJ, pp. 34–42.

Berryman,
J. G.
, and
Wang,
H. F.
, 1995, “
The Elastic Coefficients of Double-Porosity Models for Fluid Transport in Jointed Rock,” J. Geophys. Res.,
100(B12), pp. 24611–24627.

[CrossRef]
Berryman,
J. G.
, and
Pride,
S. R.
, 2002, “
Models for Computing Geomechanical Constants of Double-Porosity Materials From the Constituents' Properties,” J. Geophys. Res.,
107(B3), pp. ECV2-1–ECV2-14.

[CrossRef]