0
Technical Brief

An Accurate Thermomechanical Model for Laser-Driven Microtransfer Printing

[+] Author and Article Information
Yuyan Gao

Department of Engineering Mechanics
and Soft Matter Research Center,
Zhejiang University,
Hangzhou 310027, China

Yuhang Li

Institute of Solid Mechanics,
Beihang University (BUAA),
Beijing 100191, China;
Key Laboratory of Soft Machines
and Smart Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China;
State Key Laboratory of Digital Manufacturing
Equipment and Technology,
Huazhong University of Science and Technology,
Wuhan 430074, China

Rui Li

State Key Laboratory of Structural Analysis
for Industrial Equipment,
Department of Engineering Mechanics,
Dalian University of Technology,
Dalian 116024, China

Jizhou Song

Department of Engineering Mechanics,
Soft Matter Research Center,
Key Laboratory of Soft Machines
and Smart Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China
e-mail: jzsong@zju.edu.cn

1Y. Gao and Y. Li contributed equally to this work.

2Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received March 9, 2017; final manuscript received March 11, 2017; published online April 12, 2017. Editor: Yonggang Huang.

J. Appl. Mech 84(6), 064501 (Apr 12, 2017) (4 pages) Paper No: JAM-17-1133; doi: 10.1115/1.4036257 History: Received March 09, 2017; Revised March 11, 2017

A recently developed transfer printing technique, laser-driven noncontact microtransfer printing, which involves laser-induced heating to initiate the separation at the interface between the elastomeric stamp (e.g., polydimethylsiloxane (PDMS)) and hard micro/nanomaterials (e.g., Si chip), is valuable to develop advanced engineering systems such as stretchable and curvilinear electronics. The previous thermomechanical model has identified the delamination mechanism successfully. However, that model is not valid for small-size Si chip because the size effect is ignored for simplification in the derivation of the crack tip energy release rate. This paper establishes an accurate interfacial fracture mechanics model accounting for the size effect of the Si chip. The analytical predictions agree well with finite element analysis. This accurate model may serve as the theoretical basis for system optimization, especially for determining the optimal condition in the laser-driven noncontact microtransfer printing.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kim, D. H. , Ahn, J. H. , Choi, W. M. , Kim, H. S. , Song, J. , Huang, Y. , Liu, Z. J. , Lu, C. , and Rogers, J. A. , 2008, “ Stretchable and Foldable Silicon Integrated Circuits,” Science, 320(5875), pp. 507–511. [CrossRef] [PubMed]
Kim, D. H. , Lu, N. S. , Ma, R. , Kim, Y. S. , Kim, R. H. , Wang, S. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T. I. , Chowdhury, R. , Ying, M. , Xu, L. , Li, M. , Chung, H. J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y. W. , Omenetto, F. G. , Huang, Y. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Webb, R. C. , Bonifas, A. P. , Behnaz, A. , Zhang, Y. H. , Yu, K. J. , Cheng, H. Y. , Shi, M. X. , Bian, Z. , Liu, Z. J. , Kim, Y. S. , Yeo, W. H. , Park, J. S. , Song, J. , Li, Y. , Huang, Y. , Gorbach, A. M. , and Rogers, J. A. , 2013, “ Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin,” Nat. Mater., 12, pp. 938–944. [CrossRef] [PubMed]
Ko, H. C. , Stoykovich, M. P. , Song, J. , Malyarchuk, V. , Choi, W. M. , Yu, C. J. , Geddes, J. B., III , Xiao, J. , Wang, S. , Huang, Y. , and Rogers, J. A. , 2008, “ A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454, pp. 748–753. [CrossRef] [PubMed]
Saeidpourazar, R. , Li, R. , Li, Y. , Sangid, M. D. , Lu, C. , Huang, Y. , Rogers, J. A. , and Ferreira, P. M. , 2012, “ Laser-Driven Micro Transfer Placement of Prefabricated Microstructures,” J. Microelectromech. Syst., 21(5), pp. 1049–1058. [CrossRef]
Saeidpourazar, R. , Sangid, M. D. , Rogers, J. A. , and Ferreira, P. M. , 2012, “ A Prototype Printer for Laser Driven Micro-Transfer Printing,” J. Manuf. Processes, 14(4), pp. 416–24. [CrossRef]
Al-okaily, A. , Rogers, J. A. , and Ferreira, P. M. , 2014, “ Characterization of Delamination in Laser Micro Transfer Printing,” ASME J. Micro Nano-Manuf., 2(1), p. 011002. [CrossRef]
Al-okaily, A. , and Ferreira, P. M. , 2015, “ Multi-Physics Modeling for Laser Micro-Transfer Printing Delamination,” J. Manuf. Processes, 20(Pt. 2), pp. 414–24. [CrossRef]
Meitl, M. A. , Zhu, Z. T. , Kumar, V. , Lee, K. , Feng, X. , Huang, Y. , Adesida, I. , Nuzzo, R. G. , and Rogers, J. A. , 2006, “ Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nat. Mater., 5, pp. 33–38. [CrossRef]
Kim, S. , Wu, J. , Carlson, A. , Jin, S. H. , Kovalsky, A. , Glass, P. , Liu, Z. , Ahmed, N. , Elgan, S. L. , Chen, W. , Ferreira, P. M. , Sitti, M. , Huang, Y. , and Rogers, J. A. , 2010, “ Microstructured Elastomeric Surfaces With Reversible Adhesion and Examples of Their Use in Deterministic Assembly by Transfer Printing,” Proc. Natl. Acad. Sci. U.S.A., 107(40), pp. 17095–17100. [CrossRef] [PubMed]
Carlson, A. , Kim-Lee, H. J. , Wu, J. , Elvikis, P. , Cheng, H. , Kovalsky, A. , Elgan, S. , Yu, Q. , Ferreira, P. M. , Huang, Y. , Turner, K. T. , and Rogers, J. A. , 2011, “ Shear-Enhanced Adhesiveless Transfer Printing for Use in Deterministic Materials Assembly,” Appl. Phys. Lett., 98, p. 264104. [CrossRef]
Chen, P. , Chen, S. , and Yao, Y. , 2015, “ Deformation of Pyramidal PDMS Stamps During Microcontact Printing,” ASME J. Appl. Mech., 83(7), p. 071011.
Li, R. , Li, Y. , Lü, C. , Song, J. , Saeidpouraza, R. , Fang, B. , Zhong, Y. , Ferreira, P. M. , Rogers, J. A. , and Huang, Y. , 2012, “ Thermo-Mechanical Modeling of Laser-Driven Non-Contact Transfer Printing: Two-Dimensional Analysis,” Soft Matter, 8, pp. 7122–7127. [CrossRef]
Li, R. , Li, Y. , Lü, C. , Song, J. , Saeidpouraza, R. , Fang, B. , Zhong, Y. , Ferreira, P. M. , Rogers, J. A. , and Huang, Y. , 2012, “ Axisymmetric Thermo-Mechanical Analysis of Laser-Driven Non-Contact Transfer Printing,” Int. J. Fract., 176(2), pp. 189–194. [CrossRef]
Suo, Z. , 1989, “ Singularities Interacting With Interfaces and Cracks,” Int. J. Solids Struct., 25(10), pp. 1133–1142. [CrossRef]
Mark, J. E. , 1999, Polymer Data Handbook, Oxford University Press, New York.
Okada, Y. , and Tokumaru, Y. , 1984, “ Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon Between 300 and 1500 K,” J. Appl. Phys., 56, pp. 314–320. [CrossRef]
Tada, H. , Paris, P. C. , and Irwin, G. R. , 1973, The Stress Analysis of Crack Handbook, Del Research Corporation, Hellertown, PA.
Campbell, S. A. , 2001, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, New York.

Figures

Grahic Jump Location
Fig. 1

A typical laser-driven microtransfer printing cycle. (a) The elastomeric stamp is aligned with a donor substrate to retrieve the Si chip, (b) the Si chip is picked up by the stamp, (c) the stamp is aligned to a receiving substrate and a laser pulse is used to delaminate the stamp/Si chip interface, and (d) the Si chip is transferred onto the receiving substrate.

Grahic Jump Location
Fig. 2

The mechanics model to obtain the stress intensity factor K* at the crack tip A between PDMS and Si chip subjected to a uniform transformation strain within a circular region of radius R embedded in PDMS. (a) Schematic diagram of the analytical modeled system; (b) an approximate model for (a); (c) a uniform transformation strain spot embedded in PDMS bonded well with Si; and (d) interfacial crack with tractions prescribed on the faces.

Grahic Jump Location
Fig. 3

The stress intensity factor K* at the interfacial crack tip A between PDMS and Si chip subjected to a uniform transformation strain within a circular region of radius 0.03 μm at different locations

Grahic Jump Location
Fig. 4

The scaling law for the delamination time at the PDMS/Si chip interface

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In