Caughey,
T. K.
, and
Stumpf,
H. F.
, 1961, “
Transient Response of a Dynamic System Under Random Excitation,” ASME Appl. Mech.,
28(4), pp. 563–566.

[CrossRef]
Barnoski,
R. L.
, and
Maurer,
J.
, 1969, “
Mean Square Response of Simple Mechanical Systems to Nonstationary Random Excitation,” J. Appl. Mech.,
36(2), pp. 221–227.

[CrossRef]
Buciarelli,
L.
, and
Kuo,
C.
, 1970, “
Mean Square Response of a Second Order System to Nonstationary Random Excitation,” J. Appl. Mech.,
37(3), pp. 612–616.

[CrossRef]
Curtis,
A. F.
, and
Boykin,
T. R.
, 1961, “
Response of Two-Degree-of-Freedom Systems to White-Noise Base Excitation,” Acoust. Soc. Am.,
33(5), pp. 655–663.

[CrossRef]
Caughey,
T. K.
, 1963, “
Nonstationary Random Inputs and Responses,” Random Vibration, Vol.
2,
Massachusetts Institute of Technology,
Cambridge, MA, Chap. 3.

Crandall,
S. H.
, and
Mark,
W. D.
, 1963, Random Vibration in Mechanical Systems,
Academic Press, New York.

Roberts,
J.
, 1971, “
The Covariance Response of Linear Systems to Non-Stationary Random Excitation,” J. Sound Vib.,
14(3), pp. 385–400.

[CrossRef]
Masri,
S.
, 1978, “
Response of a Multidegree-of-Freedom System to Nonstationary Random Excitation,” ASME J. Appl. Mech.,
45(3), pp. 649–656.

[CrossRef]
Spanos,
P.-T.
, 1978, “
Non-Stationary Random Vibration of a Linear Structure,” Int. J. Solids Struct.,
14(10), pp. 861–867.

[CrossRef]
To,
C.
, 1984, “
Time-Dependent Variance and Covariance of Responses of Structures to Non-Stationary Random Excitations,” J. Sound Vib.,
93(1), pp. 135–156.

[CrossRef]
Iwan,
W.
, and
Hou,
Z.
, 1989, “
Explicit Solutions for the Response of Simple Systems Subjected to Nonstationary Random Excitation,” Struct. Saf.,
6(2–4), pp. 77–86.

[CrossRef]
Roberts,
J. B.
, and
Spanos,
P. D.
, 1990, Random Vibration and Statistical Linearization,
Wiley, Chichester, UK.

Wirsching,
P. H.
,
Paez,
T. L.
, and
Ortiz,
H.
, 1995, Random Vibration and Statistical Linearization,
Wiley, New York.

Conte,
J. P.
, and
Peng,
B.-F.
, 1996, “
Explicit Closed-Form Solution for Linear Systems Subjected to Nonstationary Random Excitation,” Probab. Eng. Mech.,
11(1), pp. 37–50.

[CrossRef]
Di Paola,
M.
, and
Elishakoff,
I.
, 1996, “
Non-Stationary Response of Linear Systems Under Stochastic Gaussian and Non-Gaussian Excitation: A Brief Overview of Recent Results,” Chaos, Solitons Fractals,
7(7), pp. 961–971.

[CrossRef]
Newland,
D. E.
, 1996, An Introduction to Random Vibrations, Spectral & Wavelet Analysis, 3rd ed.,
Dover, New York.

Lin,
Y. K.
, and
Cai,
G. Q.
, 2004, Probabilistic Structural Dynamics,
McGraw-Hill, New York.

Lutes,
L.
, and
Sarkani,
S.
, 2004, Random Vibrations: Analysis of Structural and Mechanical Systems,
Butterworth-Heinemann, Burlington, MA.

Frahm,
H.
, 1911, “
Device for Damping Vibrations of Bodies,” U.S. Patent No. 989958.

Ormondroyd,
J.
, and
Den Hartog,
J.
, 1928, “
The Theory of the Dynamic Vibration Absorber,” Appl. Mech.,
50, pp. 9–22.

Smith,
M. C.
, 2008, “Force-Controlling Mechanical Device”, U.S. Patent No. 7,316,303.

Smith,
M. C.
, 2002, “
Synthesis of Mechanical Networks: The Inerter,” IEEE Trans. Autom. Control,
47(10), pp. 1648–1662.

[CrossRef]
Papageorgiou,
C.
,
Houghton,
N. E.
, and
Smith,
M. C.
, 2009, “
Experimental Testing and Analysis of Inerter Devices,” ASME J. Dyn. Syst., Meas., Control,
131(1), p. 011001.

[CrossRef]
Chuan,
L.
,
Liang,
M.
,
Wang,
Y.
, and
Dong,
Y.
, 2011, “
Vibration Suppression Using Two Terminal Flywheel—Part I: Modeling and Characterization,” Vib. Control,
18(8), pp. 1096–1105.

Lazar,
I. F.
,
Neild,
S. A.
, and
Wagg,
D. J.
, 2014, “
Using an Inerter-Based Device for Structural Vibration Suppression,” Earthquake Eng. Struct. Dyn.,
43(8), pp. 1129–1147.

[CrossRef]
Marian,
L.
, and
Giaralis,
A.
, 2014, “
Optimal Design of a Novel Tuned-Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems,” Probab. Eng. Mech.,
38, pp. 156–164.

[CrossRef]
Den Hartog,
J.
, 1956, Mechanical Vibrations, 4th ed.,
McGraw-Hill,
New York.