0
Research Papers

Post-Buckling Analysis of Curved Beams

[+] Author and Article Information
Zhichao Fan, Qiang Ma, Yuan Liu

AML,
Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China;
Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China

Jian Wu

AML,
Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China;
Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China
e-mail: wujian@tsinghua.edu.cn

Yewang Su

State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China

Keh-Chih Hwang

AML,
Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China;
Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China
e-mail: huangkz@tsinghua.edu.cn

1Corresponding authors.

Manuscript received November 16, 2016; final manuscript received December 15, 2016; published online January 24, 2017. Assoc. Editor: Daining Fang.

J. Appl. Mech 84(3), 031007 (Jan 24, 2017) (15 pages) Paper No: JAM-16-1561; doi: 10.1115/1.4035534 History: Received November 16, 2016; Revised December 15, 2016

Stretchability of the stretchable and flexible electronics involves the post-buckling behaviors of internal connectors that are designed into various shapes of curved beams. The linear displacement–curvature relation is often used in the existing post-buckling analyses. Koiter pointed out that the post-buckling analysis needs to account for curvature up to the fourth power of displacements. A systematic method is established for the accurate post-buckling analysis of curved beams in this paper. It is shown that the nonlinear terms in curvature should be retained, which is consistent with Koiter's post-buckling theory. The stretchability and strain of the curved beams under different loads can be accurately obtained with this method.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kim, D. H. , Lu, N. S. , Huang, Y. G. , and Rogers, J. A. , 2012, “ Materials for Stretchable Electronics in Bioinspired and Biointegrated Devices,” MRS Bull., 37(3), pp. 226–235. [CrossRef]
Kim, D. H. , Song, J. Z. , Choi, W. M. , Kim, H. S. , Kim, R. H. , Liu, Z. J. , Huang, Y. Y. , Hwang, K.-C. , Zhang, Y. W. , and Rogers, J. A. , 2008, “ Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations,” Proc. Natl. Acad. Sci. U.S.A., 105(48), pp. 18675–18680. [CrossRef] [PubMed]
Lacour, S. P. , Wagner, S. , Narayan, R. J. , Li, T. , and Suo, Z. G. , 2006, “ Stiff Subcircuit Islands of Diamondlike Carbon for Stretchable Electronics,” J. Appl. Phys., 100(1), p. 014913. [CrossRef]
Lee, J. , Wu, J. , Ryu, J. H. , Liu, Z. , Meitl, M. , Zhang, Y. W. , Huang, Y. , and Rogers, J. A. , 2012, “ Stretchable Semiconductor Technologies With High Areal Coverages and Strain-Limiting Behavior: Demonstration in High-Efficiency Dual-Junction Gainp/Gaas Photovoltaics,” Small, 8(12), pp. 1851–1856. [CrossRef] [PubMed]
Li, Y. , Shi, X. , Song, J. , Lü, C. , Kim, T.-I. , Mccall, J. G. , Bruchas, M. R. , Rogers, J. A. , and Huang, Y. , 2013, “ Thermal Analysis of Injectable, Cellular-Scale Optoelectronics With Pulsed Power,” Proc. R. Soc. London A, 469(2156), p. 20130398. [CrossRef]
Lin, S. , Yuk, H. , Zhang, T. , Parada, G. A. , Koo, H. , Yu, C. , and Zhao, X. , 2016, “ Stretchable Hydrogel Electronics and Devices,” Adv. Mater., 28(22), pp. 4497–4505. [CrossRef] [PubMed]
Lu, N. S. , and Yang, S. X. , 2015, “ Mechanics for Stretchable Sensors,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 149–159. [CrossRef]
Ma, Q. , and Zhang, Y. , 2016, “ Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics,” ASME J. Appl. Mech., 83(11), p. 111008. [CrossRef]
Sekitani, T. , Noguchi, Y. , Hata, K. , Fukushima, T. , Aida, T. , and Someya, T. , 2008, “ A Rubberlike Stretchable Active Matrix Using Elastic Conductors,” Science, 321(5895), pp. 1468–1472. [CrossRef] [PubMed]
Xu, S. , Zhang, Y. , Jia, L. , Mathewson, K. E. , Jang, K.-I. , Kim, J. , Fu, H. , Huang, X. , Chava, P. , and Wang, R. , 2014, “ Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin,” Science, 344(6179), pp. 70–74. [CrossRef] [PubMed]
Xu, S. , Zhang, Y. H. , Cho, J. , Lee, J. , Huang, X. , Jia, L. , Fan, J. A. , Su, Y. W. , Su, J. , Zhang, H. G. , Cheng, H. Y. , Lu, B. W. , Yu, C. J. , Chuang, C. , Kim, T.-I. , Song, T. , Shigeta, K. , Kang, S. , Dagdeviren, C. , Petrov, I. , Braun, P. V. , Huang, Y. G. , Paik, U. , and Rogers, J. A. , 2013, “ Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems,” Nat. Commun., 4, p. 1543. [CrossRef] [PubMed]
Yang, S. , Qiao, S. , and Lu, N. , 2016, “ Elasticity Solutions to Nonbuckling Serpentine Ribbons,” ASME J. Appl. Mech., 84(2), p. 021004. [CrossRef]
Fan, Z. , Zhang, Y. , Ma, Q. , Zhang, F. , Fu, H. , Hwang, K.-C. , and Huang, Y. , 2016, “ A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics,” Int. J. Solids Struct., 91, pp. 46–54. [CrossRef] [PubMed]
Cheng, H. Y. , and Wang, S. D. , 2014, “ Mechanics of Interfacial Delamination in Epidermal Electronics Systems,” ASME J. Appl. Mech., 81(4), p. 044501. [CrossRef]
Jung, S. , Kim, J. H. , Kim, J. , Choi, S. , Lee, J. , Park, I. , Hyeon, T. , and Kim, D. H. , 2014, “ Reverse-Micelle-Induced Porous Pressure-Sensitive Rubber for Wearable Human-Machine Interfaces,” Adv. Mater., 26(28), pp. 4825–4830. [CrossRef] [PubMed]
Kim, D. H. , Lu, N. S. , Ma, R. , Kim, Y. S. , Kim, R. H. , Wang, S. D. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T. I. , Chowdhury, R. , Ying, M. , Xu, L. Z. , Li, M. , Chung, H. J. , Keum, H. , Mccormick, M. , Liu, P. , Zhang, Y. W. , Omenetto, F. G. , Huang, Y. G. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Lanzara, G. , Salowitz, N. , Guo, Z. Q. , and Chang, F.-K. , 2010, “ A Spider-Web-Like Highly Expandable Sensor Network for Multifunctional Materials,” Adv. Mater., 22(41), pp. 4643–4648. [CrossRef] [PubMed]
Wang, S. , Li, M. , Wu, J. , Kim, D. H. , Lu, N. , Su, Y. , Kang, Z. , Huang, Y. , and Rogers, J. A. , 2012, “ Mechanics of Epidermal Electronics,” ASME J. Appl. Mech., 79(3), p. 031022. [CrossRef]
Kim, J. , Lee, M. , Shim, H. J. , Ghaffari, R. , Cho, H. R. , Son, D. , Jung, Y. H. , Soh, M. , Choi, C. , Jung, S. , Chu, K. , Jeon, D. , Lee, S. T. , Kim, J. H. , Choi, S. H. , Hyeon, T. , and Kim, D. H. , 2014, “ Stretchable Silicon Nanoribbon Electronics for Skin Prosthesis,” Nat. Commun., 5, p. 5747. [CrossRef] [PubMed]
Mannsfeld, S. C. B. , Tee, B. C. K. , Stoltenberg, R. M. , Chen, C. V. H. H. , Barman, S. , Muir, B. V. O. , Sokolov, A. N. , Reese, C. , and Bao, Z. , 2010, “ Highly Sensitive Flexible Pressure Sensors With Microstructured Rubber Dielectric Layers,” Nat. Mater., 9(10), pp. 859–864. [CrossRef] [PubMed]
Someya, T. , Sekitani, T. , Iba, S. , Kato, Y. , Kawaguchi, H. , and Sakurai, T. , 2004, “ A Large-Area, Flexible Pressure Sensor Matrix With Organic Field-Effect Transistors for Artificial Skin Applications,” Proc. Natl. Acad. Sci. U.S.A., 101(27), pp. 9966–9970. [CrossRef] [PubMed]
Wagner, S. , Lacour, S. P. , Jones, J. , Hsu, P. H. I. , Sturm, J. C. , Li, T. , and Suo, Z. G. , 2004, “ Electronic Skin: Architecture and Components,” Phys. E Low-Dimens. Syst. Nanostruct., 25(2–3), pp. 326–334. [CrossRef]
Yang, S. X. , Chen, Y. C. , Nicolini, L. , Pasupathy, P. , Sacks, J. , Su, B. , Yang, R. , Sanchez, D. , Chang, Y. F. , Wang, P. L. , Schnyer, D. , Neikirk, D. , and Lu, N. S. , 2015, “ Cut-and-Paste" Manufacture of Multiparametric Epidermal Sensor Systems,” Adv. Mater., 27(41), pp. 6423–6430. [CrossRef] [PubMed]
Ko, H. C. , Stoykovich, M. P. , Song, J. Z. , Malyarchuk, V. , Choi, W. M. , Yu, C.-J. , Geddes, J. B., III , Xiao, J. , Wang, S. D. , Huang, Y. G. , and Rogers, J. A. , 2008, “ A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454(7205), pp. 748–753. [CrossRef] [PubMed]
Lu, C. F. , Li, M. , Xiao, J. L. , Jung, I. , Wu, J. , Huang, Y. G. , Hwang, K.-C. , and Rogers, J. A. , 2013, “ Mechanics of Tunable Hemispherical Electronic Eye Camera Systems That Combine Rigid Device Elements With Soft Elastomers,” ASME J. Appl. Mech., 80(6), p. 061022. [CrossRef]
Song, Y. M. , Xie, Y. Z. , Malyarchuk, V. , Xiao, J. L. , Jung, I. , Choi, K.-J. , Liu, Z. J. , Park, H. , Lu, C. F. , Kim, R.-H. , Li, R. , Crozier, K. B. , Huang, Y. G. , and Rogers, J. A. , 2013, “ Digital Cameras With Designs Inspired by the Arthropod Eye,” Nature, 497(7447), pp. 95–99. [CrossRef] [PubMed]
Chen, C. , Tao, W. , Su, Y. , Wu, J. , and Song, J. , 2013, “ Lateral Buckling of Interconnects in a Noncoplanar Mesh Design for Stretchable Electronics,” ASME J. Appl. Mech., 80(4), p. 041031. [CrossRef]
Reis, P. M. , 2015, “ A Perspective on the Revival of Structural (in) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia,” ASME J. Appl. Mech., 82(11), p. 111001. [CrossRef]
Xu, S. , Yan, Z. , Jang, K. I. , Huang, W. , Fu, H. , Kim, J. , Wei, Z. , Flavin, M. , Mccracken, J. , Wang, R. , Badea, A. , Liu, Y. , Xiao, D. , Zhou, G. , Lee, J. , Chung, H. U. , Cheng, H. , Ren, W. , Banks, A. , Li, X. , Paik, U. , Nuzzo, R. G. , Huang, Y. , Zhang, Y. , and Rogers, J. A. , 2015, “ Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling,” Science, 347(6218), pp. 154–159. [CrossRef] [PubMed]
Yan, Z. , Zhang, F. , Liu, F. , Han, M. , Ou, D. , Liu, Y. , Lin, Q. , Guo, X. , Fu, H. , Xie, Z. , Gao, M. , Huang, Y. , Kim, J. , Qiu, Y. , Nan, K. , Kim, J. , Gutruf, P. , Luo, H. , Zhao, A. , Hwang, K.-C. , Huang, Y. , Zhang, Y. , and Rogers, J. A. , 2016, “ Mechanical Assembly of Complex, 3d Mesostructures From Releasable Multilayers of Advanced Materials,” Sci. Adv., 2(9), p. e1601014. [CrossRef] [PubMed]
Timoshenko, S. P. , and Gere, J. M. , 1961, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York.
Carrier, G. F. , 1947, “ On the Buckling of Elastic Rings,” J. Math. Phys., 26(2), pp. 94–103. [CrossRef]
Budiansky, B. , 1974, “ Theory of Buckling and Post-Buckling Behavior of Elastic Structures,” Adv. Appl. Mech., 14, pp. 1–65.
Liu, L. , and Lu, N. , 2016, “ Variational Formulations, Instabilities and Critical Loadings of Space Curved Beams,” Int. J. Solids Struct., 87, pp. 48–60. [CrossRef]
Trahair, N. S. , 1993, Flexural-Torsional Buckling of Structures, CRC Press, Boca Raton, FL.
Trahair, N. S. , and Papangelis, J. P. , 1987, “ Flexural-Torsional Buckling of Monosymmetric Arches,” J. Struct. Eng., 113(10), pp. 2271–2288. [CrossRef]
van der Heijden, A. M. A. , 2009, W.T. Koiter's Elastic Stability of Solids and Structures, Cambridge University Press, New York.
Koiter, W. T. , 1963, “ Elastic Stability and Post-Buckling Behaviour,” Nonlinear Problems, University of Wisconsin Press, Madison, WI.
Zhang, C. , Wu, J. , Hwang, K.-C. , and Huang, Y. , 2016, “ Postbuckling of Hyperelastic Plates,” ASME J. Appl. Mech., 83(5), p. 051012. [CrossRef]
Love, A. E. H. , 1927, A Treatise on the Mathematical Theory of Elasticity, Dover, New York.
Su, Y. , Wu, J. , Fan, Z. , Hwang, K.-C. , Song, J. , Huang, Y. , and Rogers, J. A. , 2012, “ Postbuckling Analysis and Its Application to Stretchable Electronics,” J. Mech. Phys. Solids, 60(3), pp. 487–508. [CrossRef]
Challamel, N. , Casandjian, C. , and Lerbet, J. , 2009, “ On the Occurrence of Flutter in the Lateral–Torsional Instabilities of Circular Arches Under Follower Loads,” J. Sound Vib., 320(3), pp. 617–631. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of initial and deformed curved beam

Grahic Jump Location
Fig. 3

The ratio of load to critical load, p¯2/p¯2(0), versus the normalized displacement, U2max/(2R), during post-buckling, which is consistent with the results of Carrier's model

Grahic Jump Location
Fig. 2

Schematic illustration of elastic ring under uniform compression

Grahic Jump Location
Fig. 4

Schematic illustration of boundary conditions of circular beam under bending moment load

Grahic Jump Location
Fig. 8

Schematic illustration of boundary conditions of circular beam under uniform pressure

Grahic Jump Location
Fig. 5

The ratio, γε, with and without the nonlinear terms in curvature: (a) the ratio, γε, versus the Poisson's ratio ν for the normalized angle α¯=1/4, 1/2, and 2/3. (b) The ratio, γε, versus the normalized angle α¯ for gold (i.e., ν=0.42).

Grahic Jump Location
Fig. 6

The normalized maximum principal strain εmaxR/w with and without the nonlinear terms in curvature versus the shortening ratio γd for ν=0.42 and α¯=1/4, 1/2, and 2/3

Grahic Jump Location
Fig. 7

The distributions of the twist angle of the circular beam for the different shortening ratios, γd  = 0.1, 0.2, and 0.3

Grahic Jump Location
Fig. 9

The ratio of load to critical load, p¯2/p¯2(0), with and without the nonlinear terms in curvature versus the normalized out-of-plane displacement, U1max/LS, for ν=0.42 and α¯=1/4, 1/2, and 2/3

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In