Rice,
J.
, and
Sih,
G. C.
, 1965, “
Plane Problems of Cracks in Dissimilar Media,” ASME J. Appl. Mech.,
32(2), pp. 418–423.

[CrossRef]
Hutchinson,
J. W.
,
Mear,
M.
, and
Rice,
J. R.
, 1987, “
Crack Paralleling an Interface Between Dissimilar Materials,” ASME J. Appl. Mech.,
54(4), pp. 828–832.

[CrossRef]
Rice,
J.
, 1988, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks,” ASME J. Appl. Mech.,
55(1), pp. 98–103.

[CrossRef]
Evans,
A.
,
Rühle,
M.
,
Dalgleish,
B.
, and
Charalambides,
P.
, 1990, “
The Fracture Energy of Bimaterial Interfaces,” Metall. Trans. A,
21(9), pp. 2419–2429.

[CrossRef]
Hutchinson,
J. W.
, and
Suo,
Z.
, 1991, “
Mixed Mode Cracking in Layered Materials,” Adv. Appl. Mech.,
29, pp. 63–191.

Yau,
J.
, and
Wang,
S.
, 1984, “
An Analysis of Interface Cracks Between Dissimilar Isotropic Materials Using Conservation Integrals in Elasticity,” Eng. Fract. Mech.,
20(3), pp. 423–432.

[CrossRef]
Charalambides,
P.
,
Lund,
J.
,
Evans,
A.
, and
McMeeking,
R.
, 1989, “
A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” ASME J. Appl. Mech.,
56(1), pp. 77–82.

[CrossRef]
Matos,
P.
,
McMeeking,
R.
,
Charalambides,
P.
, and
Drory,
M.
, 1989, “
A Method for Calculating Stress Intensities in Bimaterial Fracture,” Int. J. Fract.,
40(4), pp. 235–254.

[CrossRef]
Parks,
D. M.
, 1974, “
A Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors,” Int. J. Fract.,
10(4), pp. 487–502.

[CrossRef]
Belytschko,
T.
, and
Black,
T.
, 1999, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing,” Int. J. Numer. Methods Eng.,
45(5), pp. 601–620.

[CrossRef]
Dolbow,
J.
, and
Belytschko,
T.
, 1999, “
A Finite Element Method for Crack Growth Without Remeshing,” Int. J. Numer. Methods Eng.,
46(1), pp. 131–150.

[CrossRef]
Hrennikoff,
A.
, 1941, “
Solution of Problems of Elasticity by the Framework Method,” ASME J. Appl. Mech.,
8(4), pp. 169–175.

Herrmann,
H. J.
, 1988, “
Introduction to Modern Ideas on Tracture Patterns,” Random Fluctuations and Pattern Growth: Experiments and Models,
Springer,
Dordrecht, The Netherlands, pp. 149–160.

De Borst,
R.
, and
Mühlhaus,
H.
, 1991, “
Continuum Models for Discontinuous Media,” International RILEM/Conference, E. S. I. S., Fracture Processes in Concrete, Rock and Ceramics, Noordwijk, The Netherlands, June 19–21, pp. 601–618.

Schlangen,
E.
, and
Garboczi,
E.
, 1996, “
New Method for Simulating Fracture Using an Elastically Uniform Random Geometry Lattice,” Int. J. Eng. Sci.,
34(10), pp. 1131–1144.

[CrossRef]
Bolander,
J. E.
, and
Saito,
S.
, 1998, “
Fracture Analyses Using Spring Networks With Random Geometry,” Eng. Fract. Mech.,
61(5), pp. 569–591.

[CrossRef]
Van Mier,
J. G.
, 2012 Concrete Fracture: A Multiscale Approach,
CRC Press,
Boca Raton, FL.

Tankasala,
H.
,
Deshpande,
V.
, and
Fleck,
N.
, 2013, “
Koiter Medal Paper: Crack-Tip Fields and Toughness of Two-Dimensional Elastoplastic Lattices,” ASME J. Appl. Mech.,
82(9), p. 091004.

[CrossRef]
Schlangen,
E.
, and
Van Mier,
J.
, 1992, “
Experimental and Numerical Analysis of Micromechanisms of Fracture of Cement-Based Composites,” Cem. Concr. Compos.,
14(2), pp. 105–118.

[CrossRef]
Mohammadipour,
A.
, and
Willam,
K.
, 2016, “
Lattice Simulations for Evaluating Interface Fracture of Masonry Composites,” Theor. Appl. Fract. Mech.,
82, pp. 152–168.

[CrossRef]
Mohammadipour,
A.
, and
Willam,
K.
, 2016, “
Lattice Approach in Continuum and Fracture Mechanics,” ASME J. Appl. Mech.,
83(7), p. 071003.

[CrossRef]
Mohammadipour,
A.
, 2015, “
Interface Fracture in Masonry Composites: A Lattice Approach,” Ph.D. thesis, University of Houston, Houston, TX.

Eshelby,
J. D.
, 1951, “
The Force on an Elastic Singularity,” Philos. Trans. R. Soc. London A,
244(877), pp. 87–112.

[CrossRef]
Rice,
J. R.
, 1968, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” ASME J. Appl. Mech.,
35(2), pp. 379–386.

[CrossRef]
Eshelby,
J.
, 1975, “
The Elastic Energy-Momentum Tensor,” J. Elasticity,
5(3–4) pp. 321–335.

[CrossRef]
Mohammadipour,
A.
,
Willam,
K.
, and
Ayoub,
A.
, 2013, “
Experimental Studies of Brick and Mortar Composites Using Digital Image Analysis,” 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-8, Toledo, Spain, pp. 172–181.

Willam,
K.
,
Mohammadipour,
A.
,
Mousavi,
R.
, and
Ayoub,
A. S.
, 2013, “
Failure of Unreinforced Masonry Under Compression,” Structures Congress, pp. 2949–2961.

Champiri,
M. D.
,
Mousavizadegan,
S. H.
, and
Moodi,
F.
, 2012, “
A Decision Support System for Diagnosis of Distress Cause and Repair in Marine Concrete Structures,” Comput. Concr.,
9(2), pp. 99–118.

[CrossRef]
Champiri,
M. D.
,
Sajjadi,
S.
,
Mousavizadegan,
S. H.
, and
Moodi,
F.
, 2016, “
Assessing Distress Cause and Estimating Evaluation Index for Marine Concrete Structures,” Am. J. Civ. Eng. Arch.,
4(4), pp. 142–152.

Beizaee,
S.
,
Willam,
K. J.
,
Xotta,
G.
, and
Mousavi,
R.
, 2016, “
Error Analysis of Displacement Gradients Via Finite Element Approximation of Digital Image Correlation System,” 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-9, 9.

Mohammadipour,
A.
, and
Willam,
K.
, 2016, “
The Homogenization of a Masonry Unit Cell Using a Lattice Approach: Uniaxial Tension Case,” 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-9, 9.

Irwin,
G.
, 1956, “
Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys,” Sagamore Research Conference Proceedings, pp. 289–305.

Gurtin,
M. E.
, 2000, Configurational Forces as Basic Concepts of Continuum Physics, Vol.
137,
Springer Science & Business Media, New York.

Kienzler,
R.
, and
Herrmann,
G.
, 2012, Mechanics in Material Space: With Applications to Defect and Fracture Mechanics,
Springer Science & Business Media, Berlin.

Maugin,
G. A.
, 1993, Material Inhomogeneities in Elasticity, Chapman & Hall, London.

Eshelby,
J.
, 1999, “
Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics,” Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids,
Springer, Berlin, pp. 82–119.

Maugin,
G. A.
, 2011, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics,
CRC Press, Boca Raton, FL.

Gurtin,
M. E.
, 1995, “
The Nature of Configurational Forces,” Arch. Ration. Mech. Anal.,
131(1), pp. 67–100.

[CrossRef]
Mueller,
R.
, and
Maugin,
G.
, 2002, “
On Material Forces and Finite Element Discretizations,” Comput. Mech.,
29(1), pp. 52–60.

[CrossRef]
Mueller,
R.
,
Gross,
D.
, and
Maugin,
G.
, 2004, “
Use of Material Forces in Adaptive Finite Element Methods,” Comput. Mech.,
33(6), pp. 421–434.

[CrossRef]
Steinmann,
P.
,
Scherer,
M.
, and
Denzer,
R.
, 2009, “
Secret and Joy of Configurational Mechanics: From Foundations in Continuum Mechanics to Applications in Computational Mechanics,” ZAMM-J. Appl. Math. Mech.,
89(8), pp. 614–630.

[CrossRef]
Cosserat,
E.
, and
Cosserat,
F.
, 1909, Théorie des Corps Déformables, Vol.
3,
Cornell University Library,
Paris, France, pp. 17–29.

Eringen,
A. C.
, 1965, “
Linear Theory of Micropolar Elasticity,” DTIC Document, Technical Report No. 29.

Eringen,
A.
, 1967, “
Theory of Micropolar Elasticity,” DTIC Document, Technical Report No. 1.

Cowin,
S.
, 1970, “
Stress Functions for Cosserat Elasticity,” Int. J. Solids Struct.,
6(4), pp. 389–398.

[CrossRef]
Huang,
F.-Y.
,
Yan,
B.-H.
, and
Yang,
D.-U.
, 2002, “
The Effects of Material Constants on the Micropolar Elastic Honeycomb Structure With Negative Poisson's Ratio Using the Finite Element Method,” Eng. Comput.,
19(7), pp. 742–763.

[CrossRef]