0
Research Papers

Linking Internal Dissipation Mechanisms to the Effective Complex Viscoelastic Moduli of Ferroelectrics

[+] Author and Article Information
Charles S. Wojnar

Department of Mechanical and
Aerospace Engineering,
Missouri University of Science and Technology,
400 West 13th Street,
Rolla, MO 65409
e-mail: wojnarc@mst.edu

Dennis M. Kochmann

Graduate Aerospace Laboratories,
California Institute of Technology,
1200 East California Boulevard,
Pasadena, CA 91125
e-mail: kochmann@caltech.edu

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received September 25, 2016; final manuscript received October 17, 2016; published online November 17, 2016. Assoc. Editor: A. Amine Benzerga.

J. Appl. Mech 84(2), 021006 (Nov 17, 2016) (14 pages) Paper No: JAM-16-1473; doi: 10.1115/1.4035033 History: Received September 25, 2016; Revised October 17, 2016

Microstructural mechanisms such as domain switching in ferroelectric ceramics dissipate energy, the nature, and extent of which are of significant interest for two reasons. First, dissipative internal processes lead to hysteretic behavior at the macroscale (e.g., the hysteresis of polarization versus electric field in ferroelectrics). Second, mechanisms of internal friction determine the viscoelastic behavior of the material under small-amplitude vibrations. Although experimental techniques and constitutive models exist for both phenomena, there is a strong disconnect and, in particular, no advantageous strategy to link both for improved physics-based kinetic models for multifunctional rheological materials. Here, we present a theoretical approach that relates inelastic constitutive models to frequency-dependent viscoelastic parameters by linearizing the kinetic relations for the internal variables. This enables us to gain qualitative and quantitative experimental validation of the kinetics of internal processes for both quasistatic microstructure evolution and high-frequency damping. We first present the simple example of the generalized Maxwell model and then proceed to the case of ferroelectric ceramics for which we predict the viscoelastic response during domain switching and compare to experimental data. This strategy identifies the relations between microstructural kinetics and viscoelastic properties. The approach is general in that it can be applied to other rheological materials with microstructure evolution.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lynch, C. , 1996, “ The Effect of Uniaxial Stress on the Electro-Mechanical Response of 8/65/35 PLZT,” Acta Mater., 44(10), pp. 4137–4148. [CrossRef]
Sandu, A. , Tsuchiya, K. , Yamamoto, S. , Todaka, Y. , and Umemoto, M. , 2006, “ Influence of Isothermal Ageing on Mechanical Behaviour in Ni-Rich Ti-Zr-Ni Shape Memory Alloy,” Scr. Mater., 55(12), pp. 1079–1082. [CrossRef]
Saxena, P. , Hossain, M. , and Steinmann, P. , 2013, “ A Theory of Finite Deformation Magneto-Viscoelasticity,” Int. J. Solids Struct., 50(24), pp. 3886–3897. [CrossRef]
Wojnar, C. S. , le Graverend, J.-B. , and Kochmann, D. M. , 2014, “ Broadband Control of the Viscoelasticity of Ferroelectrics Via Domain Switching,” Appl. Phys. Lett., 105(16), p. 162912. [CrossRef]
Uchino, K. , 1997, Piezoelectric Actuators and Ultrasonic Motors (Electronic Materials: Science & Technology), Kluwer Academic Publishers, Norwell, MA.
Crawley, E. F. , and Deluis, J. , 1987, “ Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA J., 25(10), pp. 1373–1385. [CrossRef]
De Marqui, C., Jr. , Vieira, W. G. R. , Erturk, A. , and Inman, D. J. , 2011, “ Modeling and Analysis of Piezoelectric Energy Harvesting From Aeroelastic Vibrations Using the Doublet-Lattice Method,” ASME J. Vib. Acoust., 133(1), p. 011003. [CrossRef]
Bachmann, F. , de Oliveira, R. , Sigg, A. , Schnyder, V. , Delpero, T. , Jaehne, R. , Bergamini, A. , Michaud, V. , and Ermanni, P. , 2012, “ Passive Damping of Composite Blades Using Embedded Piezoelectric Modules or Shape Memory Alloy Wires: A Comparative Study,” Smart Mater. Struct., 21(7), p. 075027. [CrossRef]
Cross, C. J. , and Fleeter, S. , 2002, “ Shunted Piezoelectrics for Passive Control of Turbomachine Blading Flow-Induced Vibrations,” Smart Mater. Struct., 11(2), p. 239. [CrossRef]
Hagood, N. , and von Flotow, A. , 1991, “ Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks,” J. Sound Vib., 146(2), pp. 243–268. [CrossRef]
Asare, T. , Poquette, B. , Schultz, J. , and Kampe, S. , 2012, “ Investigating the Vibration Damping Behavior of Barium Titanate BaTiO3 Ceramics for Use as a High Damping Reinforcement in Metal Matrix Composites,” J. Mater. Sci., 47(6), pp. 2573–2582. [CrossRef]
Goff, A. C. , Aning, A. O. , and Kampe, S. L. , 2004, “ A Model to Predict the Damping Potential of Piezoelectric-Reinforced Metal Matrix Composites,” TMS Lett., 1(3), pp. 59–60.
Zheng, L. , Zhang, D. , and Wang, Y. , 2011, “ Vibration and Damping Characteristics of Cylindrical Shells With Active Constrained Layer Damping Treatments,” Smart Mater. Struct., 20(2), p. 025008. [CrossRef]
Holland, R. , 1967, “ Representation of Dielectric, Elastic, and Piezoelectric Losses by Complex Coefficients,” IEEE Trans. Sonics Ultrason., 14(1), pp. 18–20. [CrossRef]
Herbiet, R. , Robels, U. , Dederichs, H. , and Arlt, G. , 1989, “ Domain Wall and Volume Contributions to Material Properties of PZT Ceramics,” Ferroelectrics, 98(1), pp. 107–121. [CrossRef]
Robels, U. , Herbiet, R. , and Arlt, G. , 1989, “ Coupled Losses in PZT Near the Morphotropic Phase Boundary,” Ferroelectrics, 93(1), pp. 95–103. [CrossRef]
le Graverend, J.-B. , Wojnar, C. , and Kochmann, D. , 2015, “ Broadband Electromechanical Spectroscopy: Characterizing the Dynamic Mechanical Response of Viscoelastic Materials Under Temperature and Electric Field Control in a Vacuum Environment,” J. Mater. Sci., 50(10), pp. 3656–3685. [CrossRef]
Chaplya, P. M. , and Carman, G. P. , 2002, “ Compression of Piezoelectric Ceramic at Constant Electric Field: Energy Absorption Through Non-180° Domain-Wall Motion,” J. Appl. Phys., 92(3), pp. 1504–1510. [CrossRef]
Jiménez, B. , and Vicente, J. , 2000, “ Influence of Mobile 90° Domains on the Complex Elastic Modulus of PZT Ceramics,” J. Phys. D Appl. Phys., 33(12), p. 1525. [CrossRef]
Kamiya, T. , Tsurumi, T. , Mishima, R. , Sakai, E. , and Daimon, M. , 1997, “ Frequency, Electric Field and Temperature Dependence of Piezoelectric Constant of Pb(Zr,Ti)O3 Based Ceramics Under High Electric Field,” Ferroelectrics, 196(1), pp. 277–280. [CrossRef]
Yang, G. , Ren, W. , Liu, S.-F. , Masys, A. , and Mukherjee, B. , 2000, “ Effects of Uniaxial Stress and DC Bias Field on the Piezoelectric, Dielectric, and Elastic Properties of Piezoelectric Ceramics,” IEEE Symposium in Ultrasonics, Vol. 2, pp. 1005–1008.
Burlage, S. , 1965, “ The Dependence of Elastic Constants on Polarization in a Ferroelectric Ceramic,” IEEE Trans. Sonics Ultrason., 12(1), pp. 5–8. [CrossRef]
Ramesh, R. , 1997, Thin Film Ferroelectric Materials and Devices (Electronic Materials: Science & Technology), Springer, New York.
Scott, J. , 2000, Ferroelectric Memories, Advanced Microelectronics, Springer, New York.
Burcsu, E. , Ravichandran, G. , and Bhattacharya, K. , 2004, “ Large Electrostrictive Actuation of Barium Titanate Single Crystals,” J. Mech. Phys. Solids, 52(4), pp. 823–846. [CrossRef]
Burcsu, E. , Ravichandran, G. , and Bhattacharya, K. , 2000, “ Large Strain Electrostrictive Actuation in Barium Titanate,” Appl. Phys. Lett., 77(11), pp. 1698–1700. [CrossRef]
Landau, L. , 1937, “ On the Theory of Phase Transitions (in Russian),” Zh. Eksp. Teor. Fiz., 7, pp. 19–32.
Devonshire, A. F. , 1949, “ XCVI. Theory of Barium Titanate,” Philos. Mag. Ser. 7, 40(309), pp. 1040–1063. [CrossRef]
Devonshire, A. F. , 1951, “ Cix. Theory of Barium Titanate—Part II,” Philos. Mag. Ser. 7, 42(333), pp. 1065–1079. [CrossRef]
Zhang, W. , and Bhattacharya, K. , 2005, “ A Computational Model of Ferroelectric Domains—Part I: Model Formulation and Domain Switching,” Acta Mater., 53(1), pp. 185–198. [CrossRef]
Zhang, W. , and Bhattacharya, K. , 2005, “ A Computational Model of Ferroelectric Domains—Part II: Grain Boundaries and Defect Pinning,” Acta Mater., 53(1), pp. 199–209. [CrossRef]
Su, Y. , and Landis, C. M. , 2007, “ Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning,” J. Mech. Phys. Solids, 55(2), pp. 280–305. [CrossRef]
Chen, L. Q. , 2008, “ Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review,” J. Am. Ceram. Soc., 91(6), pp. 1835–1844. [CrossRef]
Xu, B.-X. , Schrade, D. , Müller, R. , Gross, D. , Granzow, T. , and Rödel, J. , 2010, “ Phase Field Simulation and Experimental Investigation of the Electro-Mechanical Behavior of Ferroelectrics,” ZAMM—J. Appl. Math. Mech., 90(7–8), pp. 623–632. [CrossRef]
Miller, R. C. , 1958, “ Some Experiments on the Motion of 180° Domain Walls in BaTiO3,” Phys. Rev., 111(3), pp. 736–739. [CrossRef]
Miller, R. C. , and Savage, A. , 1961, “ Motion of 180° Domain Walls in BaTiO3 Under the Application of a Train of Voltage Pulses,” J. Appl. Phys., 32(4), pp. 714–721. [CrossRef]
Miller, R. C. , and Savage, A. , 1960, “ Motion of 180° Domain Walls in Metal Electroded Barium Titanate Crystals as a Function of Electric Field and Sample Thickness,” J. Appl. Phys., 31(4), pp. 662–669. [CrossRef]
Miller, R. C. , and Savage, A. , 1959, “ Direct Observation of Antiparallel Domains During Polarization Reversal in Single-Crystal Barium Titanate,” Phys. Rev. Lett., 2(7), pp. 294–296. [CrossRef]
Miller, R. C. , and Savage, A. , 1959, “ Further Experiments on the Sidewise Motion of 180° Domain Walls in BaTiO3,” Phys. Rev., 115(5), pp. 1176–1180. [CrossRef]
Miller, R. C. , and Savage, A. , 1958, “ Velocity of Sidewise 180° Domain-Wall Motion in BaTiO3 as a Function of the Applied Electric Field,” Phys. Rev., 112(3), p. 755. [CrossRef]
Savage, A. , and Miller, R. C. , 1960, “ Temperature Dependence of the Velocity of Sidewise 180° Domain-Wall Motion in BaTiO3,” J. Appl. Phys., 31(9), pp. 1546–1549. [CrossRef]
Shu, Y. C. , and Bhattacharya, K. , 2001, “ Domain Patterns and Macroscopic Behaviour of Ferroelectric Materials,” Philos. Mag. Part B, 81(12), pp. 2021–2054. [CrossRef]
Kinderlehrer, D. , 1987, “ Twinning of Crystals (ii),” Metastability and Incompletely Posed Problems, S. Antman , J. Ericksen , D. Kinderlehrer , and I. Müller , eds., Vol. 3, The IMA Volumes in Mathematics and Its Applications, Springer, New York, pp. 185–211.
Arlt, G. , 1996, “ A Physical Model for Hysteresis Curves of Ferroelectric Ceramics,” Ferroelectrics, 189(1), pp. 103–119. [CrossRef]
Pasco, Y. , and Berry, A. , 2004, “ A Hybrid Analytical/Numerical Model of Piezoelectric Stack Actuators Using a Macroscopic Nonlinear Theory of Ferroelectricity and a Preisach Model of Hysteresis,” J. Intell. Mater. Syst. Struct., 15(5), pp. 375–386. [CrossRef]
Cocks, A. C. F. , and McMeeking, R. M. , 1999, “ A Phenomenological Constitutive Law for the Behaviour of Ferroelectric Ceramics,” Ferroelectrics, 228(1), pp. 219–228. [CrossRef]
Yu, Y. , Naganathan, N. , and Dukkipati, R. , 2002, “ Preisach Modeling of Hysteresis for Piezoceramic Actuator System,” Mech. Mach. Theory, 37(1), pp. 49–59. [CrossRef]
Landis, C. M. , 2002, “ Fully Coupled, Multi-Axial, Symmetric Constitutive Laws for Polycrystalline Ferroelectric Ceramics,” J. Mech. Phys. Solids, 50(1), pp. 127–152. [CrossRef]
Ooi, P.-C. , Ishibashi, Y. , Lim, S.-C. , and Osman, J. , 2007, “ Numerical Investigation of Polarization Reversal Characteristics in a Ferroelectric Thin Film,” Ferroelectrics, 355(1), pp. 216–222. [CrossRef]
Bassiouny, E. , Ghaleb, A. F. , and Maugin, G. A. , 1988, “ Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects—I: Basic Equations,” Int. J. Eng. Sci., 26(12), pp. 1279–1295. [CrossRef]
Bassiouny, E. , Ghaleb, A. F. , and Maugin, G. A. , 1988, “ Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects—II: Poling of Ceramics,” Int. J. Eng. Sci., 26(12), pp. 1297–1306. [CrossRef]
Bassiouny, E. , and Maugin, G. A. , 1989, “ Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects—IV: Combined Electromechanical Loading,” Int. J. Eng. Sci., 27(8), pp. 989–1000. [CrossRef]
Hwang, S. C. , Huber, J. E. , McMeeking, R. M. , and Fleck, N. A. , 1998, “ The Simulation of Switching in Polycrystalline Ferroelectric Ceramics,” J. Appl. Phys., 84(3), pp. 1530–1540. [CrossRef]
Arockiarajan, A. , Menzel, A. , Delibas, B. , and Seemann, W. , 2006, “ Computational Modeling of Rate-Dependent Domain Switching in Piezoelectric Materials,” Eur. J. Mech.—A/Solids, 25(6), pp. 950–964. [CrossRef]
Miehe, C. , and Rosato, D. , 2011, “ A Rate-Dependent Incremental Variational Formulation of Ferroelectricity,” Int. J. Eng. Sci., 49(6), pp. 466–496. [CrossRef]
Kim, S.-J. , 2011, “ A Constitutive Model for Thermo-Electro-Mechanical Behavior of Ferroelectric Polycrystals Near Room Temperature,” Int. J. Solids Struct., 48(9), pp. 1318–1329. [CrossRef]
Kamlah, M. , 2001, “ Ferroelectric and Ferroelastic Piezoceramics—Modeling of Electromechanical Hysteresis Phenomena,” Continuum Mech. Thermodyn., 13(4), pp. 219–268. [CrossRef]
Landis, C. M. , 2004, “ Non-Linear Constitutive Modeling of Ferroelectrics,” Curr. Opin. Solid State Mater. Sci., 8(1), pp. 59–69. [CrossRef]
Cochran, W. , 1959, “ Crystal Stability and the Theory of Ferroelectricity,” Phys. Rev. Lett., 3(9), pp. 412–414. [CrossRef]
Cochran, W. , 1961, “ Crystal Stability and the Theory of Ferroelectricity—Part II: Piezoelectric Crystals,” Adv. Phys., 10(40), pp. 401–420. [CrossRef]
Zhang, Q. , 2004, “ Atomistic Simulations of Barium Titanate,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
Brodt, M. , Cook, L. S. , and Lakes, R. S. , 1995, “ Apparatus for Measuring Viscoelastic Properties Over Ten Decades: Refinements,” Rev. Sci. Instrum., 66(11), pp. 5292–5297. [CrossRef]
Lakes, R. S. , 2004, “ Viscoelastic Measurement Techniques,” Rev. Sci. Instrum., 75(4), pp. 797–810. [CrossRef]
Coleman, B. , and Noll, W. , 1963, “ The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity,” Arch. Ration. Mech. Anal., 13(1), pp. 167–178. [CrossRef]
Bradford, S. C. , Hofmann, D. C. , Roberts, S. N. , Steeves, J. B. , Wojnar, C. S. , and Kochmann, D. M. , 2016, “ Energy-Efficient Active Reflectors With Improved Mechanical Stability and Improved Thermal Performance,” 3rd AIAA Spacecraft Structures Conference, San Diego, CA, Jan. 4–8, Paper No. 2016-0702.
Ortiz, M. , and Stainier, L. , 1999, “ The Variational Formulation of Viscoplastic Constitutive Updates,” Comput. Methods Appl. Mech. Eng., 171(3–4), pp. 419–444. [CrossRef]
Groot, S. R. , 1951, Thermodynamics of Irreversible Processes, North-Holland, Amsterdam, The Netherlands.
Lakes, R. , 1999, Viscoelastic Solids (CRC Mechanical Engineering Series), CRC Press, Boca Raton, FL.
Christensen, R. M. , 2003, Theory of Viscoelasticity, 2nd ed., Dover Publications, Mineola, NY.
Idiart, M. I. , 2014, “ Modeling Two-Phase Ferroelectric Composites by Sequential Laminates,” Model. Simul. Mater. Sci. Eng., 22(2), p. 025010. [CrossRef]
Kruger, G. , 1976, “ Domain Wall Motion Concept to Describe Ferroelectric Rhombohedral PLZT Ceramics,” Ferroelectrics, 11(1), pp. 417–422. [CrossRef]
Schmidt, N. A. , 1981, “ Coercive Force and 90° Domain Wall Motion in Ferroelectric PLZT Ceramics With Square Hysteresis Loops,” Ferroelectrics, 31(1), pp. 105–111. [CrossRef]
Ishibashi, Y. , 1989, “ Phenomenological Theory of Domain Walls,” Ferroelectrics, 98(1), pp. 193–205. [CrossRef]
Ishibashi, Y. , 1990, “ Structure and Physical Properties of Domain Walls,” Ferroelectrics, 104(1), pp. 299–310. [CrossRef]
Viehland, D. , and Chen, Y.-H. , 2000, “ Random-Field Model for Ferroelectric Domain Dynamics and Polarization Reversal,” J. Appl. Phys., 88(11), pp. 6696–6707. [CrossRef]
Ishibashi, Y. , and Salje, E. , 2004, “ Theoretical Consideration on the 90° Domain Walls in Tetragonal Ferroelectrics,” Ferroelectrics, 303(1), pp. 9–13. [CrossRef]
Song, T. K. , and Yang, S. M. , 2009, “ Phenomenological Calculation of the Domain-Size-Dependent Ferroelectric Domain-Wall Velocity,” J. Korean Phys. Soc., 55(2), pp. 618–621. [CrossRef]
Kliem, H. , and Kuehn, M. , 2011, “ Modeling the Switching Kinetics in Ferroelectrics,” J. Appl. Phys., 110(11), p. 114106. [CrossRef]
Genenko, Y. A. , Wehner, J. , and von Seggern, H. , 2013, “ Self-Consistent Model of Polarization Switching Kinetics in Disordered Ferroelectrics,” J. Appl. Phys., 114(8), p. 084101. [CrossRef]
Arlt, G. , Dederichs, H. , and Herbiet, R. , 1987, “ 90°-Domain Wall Relaxation in Tetragonally Distorted Ferroelectric Ceramics,” Ferroelectrics, 74(1), pp. 37–53. [CrossRef]
Gridnev, S. A. , 2007, “ Low-Frequency Shear Elasticity and Mechanical Losses in Ferroelastics,” Ferroelectrics, 360(1), pp. 1–24. [CrossRef]
Devonshire, A. , 1949, “ XCVI. Theory of Barium Titanate,” Philos. Mag. Ser. 7, 40(309), pp. 1040–1063. [CrossRef]
Zhou, D. , Kamlah, M. , and Munz, D. , 2001, “ Rate Dependence of Soft PZT Ceramics Under Electric Field Loading,” Proc SPIE, 64, pp. 64–70.
Uchino, K. , 2003, “ Introduction to Piezoelectric Actuators and Transducers,” The Pennsylvania State University, Technical Report. No. ADA429659.
Lynch, C. S. , 1994, “ Electro-Mechanical Coupling in 8/65/35 PLZT,” Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics (ISAF’94), University Park, PA, Aug. 7–10, pp. 357–360.

Figures

Grahic Jump Location
Fig. 1

A schematic of the one-dimensional generalized Maxwell model consisting of n linear springs with stiffnesses Ek in series with dashpots with strain εkr and damping parameter ηk (k = 1,…, n). The spring-dashpot systems are arranged in parallel with a linear spring of stiffness E0. The entire system is subjected to an applied stress σ causing a total strain of ε.

Grahic Jump Location
Fig. 2

Maxwell model results for (a) the dynamic stiffness |E*| and (b) loss tangent tan δ versus frequency for the parameters of Table 1

Grahic Jump Location
Fig. 3

An electric field e is applied to a PZT patch (resulting in an overall polarization p) through the thickness in the three-direction. If such a patch is attached to a vibrating structure, it will be subjected to a harmonic stress, σ, perpendicular (a) or parallel (b) to the electric field direction.

Grahic Jump Location
Fig. 4

Graph showing the maximum loss tangent, tan δmax, versus the parameter ξ according to Eq. (37)

Grahic Jump Location
Fig. 5

Simulated (solid line) and experimentally measured (connected dots) (a) electric displacement, (b) strain, (c) dynamic stiffness, and (d) loss tangent of PZT versus electric field. Experimental data were obtained from BES in Ref. [17]. Simultaneous experimental data on strain were not available.

Grahic Jump Location
Fig. 6

Simulated (a) electric displacement, (b) strain, (c) dynamic stiffness, and (d) loss tangent of PZT versus electric field with a transverse tension of 20 MPa

Grahic Jump Location
Fig. 7

Simulated (a) electric displacement, (b) strain, (c) dynamic stiffness, and (d) loss tangent of PZT versus electric field with a transverse compression of 20 MPa

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In