0
TECHNICAL PAPERS

Plastic Yielding as a Phase Transition

[+] Author and Article Information
M. Ortiz

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125

J. Appl. Mech 66(2), 289-298 (Oct 25, 1999) (9 pages) doi:10.1115/1.2791048 History: Received August 14, 1998; Revised November 20, 1998

Abstract

A statistical mechanical theory of forest hardening is developed in which yielding arises as a phase transition. For simplicity, we consider the case of a single dislocation loop moving on a slip plane through randomly distributed forest dislocations, which we treat as point obstacles. The occurrence of slip at the sites occupied by these obstacles is assumed to require the expenditure of a certain amount of work commensurate with the strength of the obstacle. The case of obstacles of infinite strength is treated in detail. We show that the behavior of the dislocation loop as it sweeps the slip plane under the action of a resolved shear stress is identical to that of a lattice gas, or, equivalently, to that of the two-dimensional spin-1/2 Ising model. In particular, there exists a critical temperature Tc below which the system exhibits a yield point, i.e., the slip strain increases sharply when the applied resolved shear stress attains a critical value. Above the critical temperature the yield point disappears and the slip strain depends continuously on the applied stress. The critical exponents, which describe the behavior of the system near the critical temperature, coincide with those of the two-dimensional spin-1/2 Ising model.

COPYRIGHT © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In