0
Research Papers

Design of Stretchable Electronics Against Impact

[+] Author and Article Information
J. H. Yuan

Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China;
AML,
Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China;
Departments of Civil and
Environmental Engineering,
Mechanical Engineering, and Material
Science and Engineering,
Northwestern University,
Evanston, IL 60208;
Skin Disease Research Center,
Northwestern University,
Evanston, IL 60208
e-mail: yuanjianghong1984@gmail.com

M. Pharr, John A. Rogers

Frederick Seitz Materials Research Laboratory,
Department of Materials Science
and Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801

X. Feng

Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China;
AML,
Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China

Yonggang Huang

Departments of Civil and
Environmental Engineering,
Mechanical Engineering, and Material
Science and Engineering,
Northwestern University,
Evanston, IL 60208;
Skin Disease Research Center,
Northwestern University,
Evanston, IL 60208

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received June 29, 2016; final manuscript received July 15, 2016; published online August 10, 2016. Assoc. Editor: Pradeep Sharma.

J. Appl. Mech 83(10), 101009 (Aug 10, 2016) (5 pages) Paper No: JAM-16-1331; doi: 10.1115/1.4034226 History: Received June 29, 2016; Revised July 15, 2016

Stretchable electronics offer soft, biocompatible mechanical properties; these same properties make them susceptible to device failure associated with physical impact. This paper studies designs for stretchable electronics that resist failure from impacts due to incorporation of a viscoelastic encapsulation layer. Results indicate that the impact resistance depends on the thickness and viscoelastic properties of the encapsulation layer, as well as the duration of impact. An analytic model for the critical thickness of the encapsulation layer is established. It is shown that a commercially available, low modulus silicone material offers viscous properties that make it a good candidate as the encapsulation layer for stretchable electronics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Khang, D. Y. , Jiang, H. Q. , Huang, Y. , and Rogers, J. A. , 2006, “ A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates,” Science, 311(5758), pp. 208–212. [CrossRef] [PubMed]
Rogers, J. A. , Someya, T. , and Huang, Y. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Zhang, Y. Y. , Chen, Y. S. , Lu, B. W. , Lü, C. F. , and Feng, X. , 2016, “ Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment,” ASME J. Appl. Mech., 83(6), p. 061007. [CrossRef]
Wang, L. , and Lu, N. S. , 2016, “ Conformability of a Thin Elastic Membrane Laminated on a Soft Substrate With Slightly Wavy Surface,” ASME J. Appl. Mech., 83(4), p. 041007. [CrossRef]
Chen, Y. L. , Zhu, Y. , Chen, X. , and Liu, Y. L. , 2016, “ Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate,” ASME J. Appl. Mech., 83(4), p. 041011. [CrossRef]
Meng, X. H. , Liu, B. Y. , Wang, Y. , Zhang, T. H. , and Xiao, J. L. , 2016, “ Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics,” ASME J. Appl. Mech., 83(8), p. 081011. [CrossRef]
Shi, Y. , Rogers, J. A. , Gao, C. F. , and Huang, Y. , 2014, “ Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties,” ASME J. Appl. Mech., 81(11), p. 114501. [CrossRef]
Shi, X. , Xu, R. , Li, Y. , Zhang, Y. , Ren, Z. , Gu, J. , Rogers, J. A. , and Huang, Y. , 2014, “ Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate,” ASME J. Appl. Mech., 81(12), p. 124502. [CrossRef]
Liu, Z. , Cheng, H. , and Wu, J. , 2014, “ Mechanics of Solar Module on Structured Substrates,” ASME J. Appl. Mech., 81(6), p. 064502. [CrossRef]
Cheng, H. , and Song, J. , 2014, “ A Simply Analytic Study of Buckled Thin Films on Compliant Substrates,” ASME J. Appl. Mech., 81(2), p. 024501. [CrossRef]
Jablonski, M. , Lucchini, R. , Bossuyt, F. , Vervust, T. , Vanfleteren, J. , De Vries, J. W. C. , Vena, P. , and Gonzalez, M. , 2015, “ Impact of Geometry on Stretchable Meandered Interconnect Uniaxial Tensile Extension Fatigue Reliability,” Microelectron. Reliab., 55(1), pp. 143–154. [CrossRef]
Hsu, Y. Y. , Papakyrikos, C. , Liu, D. , Wang, X. Y. , Raj, M. , Zhang, B. S. , and Ghaffari, R. , 2014, “ Design for Reliability of Multi-Layer Stretchable Interconnects,” J. Micromech. Microeng., 24(9), p. 095014. [CrossRef]
Nah, J. W. , Ren, F. , Tu, K. N. , Venk, S. , and Camara, G. , 2006, “ Electromigration in Pb-Free Flip Chip Solder Joints on Flexible Substrates,” J. Appl. Phys., 99(2), p. 023520. [CrossRef]
Putz, B. , Glushko, O. , and Cordill, M. J. , 2016, “ Electromigration in Gold Films on Flexible Polyimide Substrates as a Self-Healing Mechanism,” Mater. Res. Lett., 4(1), pp. 43–47. [CrossRef] [PubMed]
Dagdeviren, C. , Shi, Y. , Joe, P. , Ghaffari, R. , Balooch, G. , Usgaonkar, K. , Gur, O. , Tran, P. L. , Crosby, J. R. , Meyer, M. , Su, Y. , Webb, R. C. , Tedesco, A. S. , Slepian, M. J. , Huang, Y. , and Rogers, J. A. , 2015, “ Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics,” Nat. Mater., 14(7), pp. 728–736. [CrossRef] [PubMed]
Yuan, J. H. , Shi, Y. , Pharr, M. , Feng, X. , Rogers, J. A. , and Huang, Y. , 2016, “ A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Dermis,” ASME J. Appl. Mech., 83(8), p. 084501. [CrossRef]
Shi, Y. , Dagdeviren, C. , Rogers, J. A. , Gao, C. F. , and Huang, Y. , 2015, “ An Analytic Model for Skin Modulus Measurement Via Conformal Piezoelectric Systems,” ASME J. Appl. Mech., 82(9), p. 091007. [CrossRef]
Dai, L. C. , Huang, Y. , Chen, H. , Feng, X. , and Fang, D. N. , 2015, “ Transition Among Failure Modes of the Bending System With a Stiff Film on a Soft Substrate,” Appl. Phys. Lett., 106(2), p. 021905. [CrossRef]
Liu, H. M. , Liu, Z. X. , Xu, Z. L. , Yin, Z. P. , Huang, Y. A. , and Chen, J. K. , 2015, “ Competing Fracture of Thin-Chip Transferring From/Onto Prestrained Compliant Substrate,” ASME J. Appl. Mech., 82(10), p. 101012. [CrossRef]
Cheng, H. Y. , and Wang, S. D. , 2014, “ Mechanics of Interfacial Delamination in Epidermal Electronics Systems,” ASME J. Appl. Mech., 81(4), p. 044501. [CrossRef]
Guo, G. D. , and Zhu, Y. , 2015, “ Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate,” ASME J. Appl. Mech., 82(3), p. 031005. [CrossRef]
Wang, Q. , and Zhao, X. , 2014, “ Phase Diagrams of Instabilities in Compressed Film-Substrate Systems,” ASME J. Appl. Mech., 81(5), p. 051004. [CrossRef]
Placet, V. , and Delobelle, P. , 2015, “ Mechanical Properties of Bulk Polydimethylsiloxane for Microfluidics Over a Large Range of Frequencies and Aging Times,” J. Micromech. Microeng., 25(3), p. 035009. [CrossRef]
Havriliak, S. , and Negami, S. , 1967, “ A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers,” Polymer, 8, pp. 161–210. [CrossRef]
Gradshteyn, I. S. , and Ryzhik, I. M. , 2007, Table of Integrals, Series, and Products, 7th ed., Elsevier, Singapore.
Jang, K. I. , Chung, H. U. , Xu, S. , Lee, C. H. , Luan, H. W. , Jeong, J. , Cheng, H. Y. , Kim, G. T. , Han, S. Y. , Lee, J. W. , Kim, J. , Cho, M. , Miao, F. X. , Yang, Y. Y. , Jung, H. N. , Flavin, M. , Liu, H. , Kong, G. W. , Yu, K. J. , Rhee, S. I. , Chung, J. , Kim, B. , Kwak, J. W. , Yun, M. H. , Kim, J. Y. , Song, Y. M. , Paik, U. , Zhang, Y. H. , Huang, Y. , and Rogers, J. A. , 2015, “ Soft Network Composite Materials With Deterministic and Bio-Inspired Designs,” Nat. Commun., 6, p. 6566. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

One-dimensional model of the stretchable electronics, with viscoelastic encapsulation and soft substrate, on the surface of human skin subjected to impact loading

Grahic Jump Location
Fig. 2

ε versus X for tr/tP = 0.01 and 0.1 with Er/Ei = 0.1 and α = 0.5, based on Eq. (19) (“Approx.”) and Eq. (10) (“Exact”), respectively

Grahic Jump Location
Fig. 3

ε versus X for several values of Er/Ei with α = 0.5 and tr/tP = 0.1

Grahic Jump Location
Fig. 4

ε versus X for several values of α with Er/Ei = 0.1 and tr/tP = 0.1

Grahic Jump Location
Fig. 5

ε versus X for several values of tr/tP with Er/Ei = 0.1 and α = 0.5

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In