0
Research Papers

Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics

[+] Author and Article Information
Xianhong Meng

School of Aeronautic Science and Engineering,
Beihang University,
Beijing 100191, China
e-mail: mxh@buaa.edu.cn

Boya Liu

School of Aeronautic Science and Engineering,
Beihang University,
Beijing 100191, China

Yu Wang

Department of Mechanical Engineering,
University of Colorado Boulder,
Boulder, CO 80309

Taihua Zhang

Academy of Opto-Electronics,
Chinese Academy of Sciences,
Beijing 100094, China

Jianliang Xiao

Department of Mechanical Engineering,
University of Colorado Boulder,
Boulder, CO 80309
e-mail: jianliang.xiao@colorado.edu

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received May 21, 2016; final manuscript received May 31, 2016; published online June 16, 2016. Editor: Yonggang Huang.

J. Appl. Mech 83(8), 081011 (Jun 16, 2016) (10 pages) Paper No: JAM-16-1257; doi: 10.1115/1.4033754 History: Received May 21, 2016; Revised May 31, 2016

In flexible electronics, multilayer hard/soft materials are widely used to utilize both the superior electrical properties of inorganic semiconductors and robust mechanical properties of polymers simultaneously. However, the huge mismatch in mechanical properties of the hard and soft materials makes mechanics analysis challenging. We here present an analytical model to study the mechanics of multilayer hard/soft materials in flexible electronics. Third-order polynomials are adopted to describe the displacement field, which can be used to easily derive both strain and stress fields. Then, the principle of virtual work was used to derive the governing equations and boundary conditions, which can be solved numerically. Two types of loadings, pure bending and transverse shear, are studied. The normal strain distributions along thickness direction in the bimaterial regions clearly show zigzag profiles, due to the huge mismatch in the mechanical properties of the hard and soft materials. The effect of very different mechanical properties of the hard and soft materials on shear stress distributions can also be predicted by this model. The results from this analytical mode show good agreement with finite-element modeling (FEM). This model can be useful in systems with multilayer hard/soft materials, to predict mechanical behavior and to guide design and optimization.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yoon, J. , Baca, A. J. , and Park, S. I. , 2008, “ Ultrathin Silicon Solar Microcells for Semitransparent, Mechanically Flexible and Microconcentrator Module Designs,” Nat. Mater., 7(11), pp. 907–915. [CrossRef] [PubMed]
Crawford, G. , 2005, Flexible Flat Panel Displays, Wiley, New York.
Ko, H. C. , Stoykovich, M. P. , and Song, J. , 2008, “ A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454(7205), pp. 748–753. [CrossRef] [PubMed]
Jung, I. , Xiao, J. , and Malyarchuk, V. , 2011, “ Dynamically Tunable Hemispherical Electronic Eye Camera System With Adjustable Zoom Capability,” Proc. Natl. Acad. Sci. U.S.A., 108(5), pp. 1788–1793. [CrossRef] [PubMed]
Song, Y. M. , Xie, Y. , Malyarchuk, V. , Xiao, J. , Jung, I. , Choi, K. J. , Liu, Z. , Park, H. , Lu, C. , Kim, R. H. , Li, R. , Crozier, K. B. , Huang, Y. , and Rogers, J. A. , 2013, “ Digital Cameras With Designs Inspired by the Arthropod Eye,” Nature, 497(7447), pp. 95–99. [CrossRef] [PubMed]
Li, Z. , Wang, Y. , and Xiao, J. , 2015, “ Mechanics of Curvilinear Electronics and Optoelectronics,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 171–189. [CrossRef]
Park, S. I. , Xiong, Y. , Kim, R. H. , Elvikis, P. , Meitl, M. , Kim, D. H. , Wu, J. , Yoon, J. , Yu, C. J. , Liu, Z. , Huang, Y. , Hwang, K. C. , Ferreira, P. , Li, X. , Choquette, K. , and Rogers, J. A. , 2009, “ Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays,” Science, 325(5943), pp. 977–981. [CrossRef] [PubMed]
Park, S. I. , Brenner, D. S. , Shin, G. , Morgan, C. D. , Copits, B. A. , Chung, H. U. , Pullen, M. Y. , Noh, K. N. , Davidson, S. , Oh, S. J. , Yoon, J. , Jang, K. I. , Samineni, V. K. , Norman, M. , Grajales-Reyes, J. G. , Vogt, S. K. , Sundaram, S. S. , Wilson, K. M. , Ha, J. S. , Xu, R. , Pan, T. , Kim, T. I. , Huang, Y. , Montana, M. C. , Golden, J. P. , Bruchas, M. R. , Gereau, R. W. T. , and Rogers, J. A. , 2015, “ Soft, Stretchable, Fully Implantable Miniaturized Optoelectronic Systems for Wireless Optogenetics,” Nat. Biotechnol., 33(12), pp. 1280–1286. [CrossRef] [PubMed]
Wang, Y. , Li, Z. , and Xiao, J. , 2016, “ Stretchable Thin Film Materials: Fabrication, Application and Mechanics,” ASME J. Electron. Packag., 138(2), p. 020801. [CrossRef]
Li, Z. , Wang, Y. , and Xiao, J. , 2016, “ Mechanics of Bioinspired Imaging Systems,” Theor. Appl. Mech. Lett., 6(1), pp. 11–20. [CrossRef]
Kim, R. H. , Kim, D. H. , Xiao, J. L. , Kim, B. H. , Park, S. I. , Panilaitis, B. , Ghaffari, R. , Yao, J. M. , Li, M. , Liu, Z. J. , Malyarchuk, V. , Kim, D. G. , Le, A. P. , Nuzzo, R. G. , Kaplan, D. L. , Omenetto, F. G. , Huang, Y. G. , Kang, Z. , and Rogers, J. A. , 2010, “ Waterproof AlInGaP Optoelectronics on Stretchable Substrates With Applications in Biomedicine and Robotics,” Nat. Mater., 9(11), pp. 929–937. [CrossRef] [PubMed]
Nathan, A. , Park, B. , and Sazonov, A. , 2000, “ Amorphous Silicon Detector and Thin Film Transistor Technology for Large-Area Imaging of X-Rays,” Microelectron. J., 31(11), pp. 883–891. [CrossRef]
Hussain, A. M. , Ghaffar, F. A. , Park, S. I. , Rogers, J. A. , Shamim, A. , and Hussain, M. M. , 2015, “ Metal/Polymer Based Stretchable Antenna for Constant Frequency Far-Field Communication in Wearable Electronics,” Adv. Funct. Mater., 25(42), pp. 6565–6575. [CrossRef]
Jang, K.-I. , Han, S. Y. , Xu, S. , Mathewson, K. E. , Zhang, Y. , Jeong, J.-W. , Kim, G.-T. , Webb, R. C. , Lee, J. W. , Dawidczyk, T. J. , Kim, R. H. , Song, Y. M. , Yeo, W.-H. , Kim, S. , Cheng, H. , Rhee, S. I. , Chung, J. , Kim, B. , Chung, H. U. , Lee, D. , Yang, Y. , Cho, M. , Gaspar, J. G. , Carbonari, R. , Fabiani, M. , Gratton, G. , Huang, Y. , and Rogers, J. A. , 2015, “ Rugged and Breathable Forms of Stretchable Electronics With Adherent Composite Substrates for Transcutaneous Monitoring,” Nat. Commun., 5, p. 4779.
Li, M. , Xia, J. , and Li, R. , 2013, “ Design of Two-Dimensional Horseshoe Layout for Stretchable Electronic Systems,” J. Mater. Sci., 48(24), pp. 8443–8448. [CrossRef]
Kim, D. H. , Lu, N. , and Ma, R. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Webb, R. C. , Ma, Y. , Krishnan, S. , Li, Y. , Yoon, S. , Guo, X. , Feng, X. , Shi, Y. , Seidel, M. , Cho, N. H. , Kurniawan, J. , Ahad, J. , Sheth, N. , Kim, J. , Taylor, J. , Darlington, T. , Chang, K. , Huang, W. , Ayers, J. , Gruebele, A. , Pielak, R. , Slepian, M. , Huang, Y. , Gorbach, A. , and Rogers, J. , 2015, “ Epidermal Devices for Noninvasive, Precise, and Continuous Mapping of Macrovascular and Microvascular Blood Flow,” Sci. Adv., 1(9), p. 1500701. [CrossRef]
Kim, J. , Banks, A. , Cheng, H. , Xie, Z. , Xu, S. , Jang, K. I. , Lee, J. W. , Liu, Z. , Gutruf, P. , Huang, X. , Wei, P. , Liu, F. , Li, K. , Dalal, M. , Ghaffari, R. , Feng, X. , Huang, Y. , Gupta, S. , Paik, U. , and Rogers, J. A. , 2015, “ Epidermal Electronics With Advanced Capabilities in Near-Field Communication,” Small, 11(8), pp. 906–912. [CrossRef] [PubMed]
Xu, L. , Gutbrod, S. R. , Ma, Y. , Petrossians, A. , Liu, Y. , Webb, R. C. , Fan, J. A. , Yang, Z. , Xu, R. , Whalen, J. J., III , Weiland, J. D. , Huang, Y. , Efimov, I. R. , and Rogers, J. A. , 2015, “ Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes With Capabilities in Cardiac Electrotherapy,” Adv. Mater., 27(10), pp. 1731–1737. [CrossRef] [PubMed]
Kim, D. H. , Lu, N. S. , Ghaffari, R. , Kim, Y. S. , Lee, S. P. , Xu, L. Z. , Wu, J. A. , Kim, R. H. , Song, J. Z. , Liu, Z. J. , Viventi, J. , de Graff, B. , Elolampi, B. , Mansour, M. , Slepian, M. J. , Hwang, S. , Moss, J. D. , Won, S. M. , Huang, Y. G. , Litt, B. , and Rogers, J. A. , 2011, “ Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy,” Nat. Mater., 10(4), pp. 316–323. [CrossRef] [PubMed]
Kim, D. H. , Lu, N. , Huang, Y. , and Rogers, J. A. , 2012, “ Materials for Stretchable Electronics in Bioinspired and Biointegrated Devices,” MRS Bull., 37(3), pp. 226–235. [CrossRef]
Someya, T. , Sekitani, T. , Iba, S. , Kato, Y. , Kawaguchi, H. , and Sakurai, T. , 2004, “ A Large-Area, Flexible Pressure Sensor Matrix With Organic Field-Effect Transistors for Artificial Skin Applications,” Proc. Natl. Acad. Sci. U.S.A., 101(27), pp. 9966–9970. [CrossRef] [PubMed]
Chung, H. J. , Sulkin, M. S. , Kim, J. S. , Goudeseune, C. , Chao, H. Y. , Song, J. W. , Yang, S. Y. , Hsu, Y. Y. , Ghaffari, R. , Efimov, I. R. , and Rogers, J. A. , 2014, “ Stretchable, Multiplexed pH Sensors With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia,” Adv. Healthcare Mater., 3(1), pp. 59–68. [CrossRef]
Huang, X. , Liu, Y. H. , Chen, K. L. , Shin, W. J. , Lu, C. J. , Kong, G. W. , Patnaik, D. , Lee, S. H. , Cortes, J. F. , and Rogers, J. A. , 2014, “ Stretchable, Wireless Sensors and Functional Substrates for Epidermal Characterization of Sweat,” Small, 10(15), pp. 3083–3090. [CrossRef] [PubMed]
Huang, X. , Liu, Y. H. , Cheng, H. Y. , Shin, W. J. , Fan, J. A. , Liu, Z. J. , Lu, C. J. , Kong, G. W. , Chen, K. , Patnaik, D. , Lee, S. H. , Hage-Ali, S. , Huang, Y. G. , and Rogers, J. A. , 2014, “ Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain,” Adv. Funct. Mater., 24(25), pp. 3846–3854. [CrossRef]
Xu, S. , Zhang, Y. , Cho, J. , Lee, J. , Huang, X. , Jia, L. , Fan, J. A. , Su, Y. , Su, J. , Zhang, H. , Cheng, H. , Lu, B. , Yu, C. , Chuang, C. , Kim, T. I. , Song, T. , Shigeta, K. , Kang, S. , Dagdeviren, C. , Petrov, I. , Braun, P. V. , Huang, Y. , Paik, U. , and Rogers, J. A. , 2013, “ Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems,” Nat. Commun., 4, p. 1543. [CrossRef] [PubMed]
Zhang, Y. H. , Huang, Y. G. , and Rogers, J. A. , 2015, “ Mechanics of Stretchable Batteries and Supercapacitors,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 190–199. [CrossRef]
Rogers, J. A. , Someya, T. , and Huang, Y. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Lo, K. H. , Christensen, R. M. , and Wu, E. M. , 1977, “ A High-Order Theory of Plate Deformation—Part 1: Homogeneous Plates,” ASME J. Appl. Mech., 44(4), pp. 663–668. [CrossRef]
Reddy, J. N. , 1984, “ A Simple Higher-Order Theory for Laminated Composite Plates,” ASME J. Appl. Mech., 51(4), pp. 745–752. [CrossRef]
Reissner, E. , 1991, “ On Asymptotic Expansions for the Sixth-Order Linear Theory Problem of Transverse Bending of Orthotropic Elastic Plates,” Comput. Methods Appl. Mech. Eng., 85(1), pp. 75–88. [CrossRef]
Liu, D. , and Li, X. , 1996, “ An Overall View of Laminate Theories Based on Displacement Hypothesis,” J. Compos. Mater., 30(14), pp. 1539–1561. [CrossRef]
Savithri, S. , and Varadan, T. K. , 1993, “ Large Deflection Analysis of Laminated Composite Plates,” Int. J. Non-Linear Mech., 28(1), pp. 1–12. [CrossRef]
Savithri, S. , and Varadan, T. K. , 1990, “ Accurate Bending Analysis of Laminated Orthotropic Plates,” AIAA J., 28(10), pp. 1842–1844. [CrossRef]
Di Sciuva, M. , 1987, “ An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates,” ASME J. Appl. Mech., 54(3), pp. 589–596. [CrossRef]
Sciuva, M. D. , 1992, “ Multilayered Anisotropic Plate Models With Continuous Interlaminar Stresses,” Compos. Struct., 22(3), pp. 149–167. [CrossRef]
Sun, C. T. , and Whitney, J. M. , 1973, “ Theories for the Dynamic Response of Laminated Plates,” AIAA J., 11(2), pp. 178–183. [CrossRef]
Carrera, E. , 2003, “ Historical Review of Zig-Zag Theories for Multilayered Plates and Shells,” Appl. Mech. Rev., 56(3), pp. 287–308. [CrossRef]
Li, X. , and Liu, D. , 1995, “ Zigzag Theory for Composite Laminates,” AIAA J., 33(6), pp. 1163–1165. [CrossRef]
Tessler, A. , and Gherlone, M. , 2009, “ A Refined Zigzag Beam Theory for Composite and Sandwich Beams,” J. Compos. Mater., 43(9), pp. 1051–1081. [CrossRef]
Meng, X. , Li, M. , and Xing, Y. , 2014, “ A Piecewise Linear Model for Analyzing Thin Film/Substrate Structure in Flexible Electronics,” Acta Mech. Solida Sin., 27(4), pp. 420–428. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Illustration of the layout of a typical flexible electronic system. (b) Cross section of one half of the unit cell.

Grahic Jump Location
Fig. 2

Normal strain distributions of Si–NOA system subjected to bending moment

Grahic Jump Location
Fig. 3

Shear stress distributions of Si–NOA system subjected to bending moment

Grahic Jump Location
Fig. 4

Normal strain distributions of Si–PDMS system subjected to bending moment

Grahic Jump Location
Fig. 5

Shear stress distributions of Si–PDMS system subjected to bending moment

Grahic Jump Location
Fig. 6

Normal strain distributions of Si–NOA system subjected to transverse shear

Grahic Jump Location
Fig. 7

Shear stress distributions of Si–NOA system subjected to transverse shear

Grahic Jump Location
Fig. 8

Normal strain distributions of Si–PDMS system subjected to transverse shear

Grahic Jump Location
Fig. 9

Shear stress distributions of Si–PDMS system subjected to transverse shear

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In