Hamilton,
W. R.
, 1834, “
On a General Method in Dynamics,” Philos. Trans. R. Soc. London,
124(0), pp. 247–308.

[CrossRef]
Hamilton,
W. R.
, 1835, “
Second Essay on a General Method in Dynamics,” Philos. Trans. R. Soc. London,
125(0), pp. 95–144.

[CrossRef]
Lanczos,
C.
, 1949, The Variational Principles of Mechanics,
University of Toronto Press,
Toronto, ON, Canada.

Goldstein,
H.
, 1950, Classical Mechanics,
Addison-Wesley Press,
Cambridge, MA.

Rayleigh,
J. W. S.
, 1877, The Theory of Sound, 2nd ed., Vol.
I,
Dover Publications,
New York.

Rayleigh,
J. W. S.
, 1877, The Theory of Sound, 2nd ed., Vol.
II,
Dover Publications,
New York.

Biot,
M. A.
, 1955, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity,” Phys. Rev.,
97(6), pp. 1463–1469.

[CrossRef]
Biot,
M. A.
, 1957, “
New Methods in Heat Flow Analysis With Application to Flight Structures,” J. Aeronaut. Sci.,
24(12), pp. 857–873.

[CrossRef]
Marsden,
J. E.
, and
Ratiu,
T. S.
, 1994, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,
Springer-Verlag,
New York.

Gurtin,
M. E.
, 1963, “
Variational Principles in the Linear Theory of Viscoelasticity,” Arch. Ration. Mech. Anal.,
13(1), pp. 179–191.

[CrossRef]
Gurtin,
M. E.
, 1964, “
Variational Principles for Linear Initial-Value Problems,” Q. Appl. Math.,
22, pp. 252–256.

Gurtin,
M. E.
, 1964, “
Variational Principles for Linear Elastodynamics,” Arch. Ration. Mech. Anal.,
16(1), pp. 34–50.

[CrossRef]
Tonti,
E.
, 1973, “
On the Variational Formulation for Linear Initial Value Problems,” Ann. Mat. Pura Appl.,
95(1), pp. 331–360.

[CrossRef]
Tonti,
E.
, 1982, “
A General Solution of the Inverse Problem of the Calculus of Variations,” Hadronic J.,
5, pp. 1404–1450.

Tonti,
E.
, 1984, “
Variational Formulation for Every Nonlinear Problem,” Int. J. Solids Struct.,
22(11–12), pp. 1343–1371.

Tonti,
E.
, 1985, “
Inverse Problem: Its General Solution,” Differential Geometry, Calculus of Variations and Their Applications,
G. M. Rassias
, and
T. M. Rassias
, eds.,
Marcel Dekker,
New York.

Oden,
J. T.
, and
Reddy,
J. N.
, 1983, Variational Methods in Theoretical Mechanics,
Springer-Verlag,
Berlin.

Dargush,
G. F.
, and
Kim,
J.
, 2012, “
Mixed Convolved Action,” Phys. Rev. E,
85(6), p. 066606.

[CrossRef]
Dargush,
G. F.
, 2012, “
Mixed Convolved Action for Classical and Fractional-Derivative Dissipative Dynamical Systems,” Phys. Rev. E,
86(6), p. 066606.

[CrossRef]
Dargush,
G. F.
,
Darrall,
B. T.
,
Kim,
J.
, and
Apostolakis,
G.
, 2015, “
Mixed Convolved Action Principles in Linear Continuum Dynamics,” Acta Mech.,
226(12), pp. 4111–4137.

[CrossRef]
Dargush,
G. F.
,
Apostolakis,
G.
,
Darrall,
B. T.
, and
Kim,
J.
, “
Mixed Convolved Action Variational Principles in Heat Diffusion,” Int. J. Heat Mass Transfer,
100, pp. 790–799.

[CrossRef]
Biot,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation,” J. Appl. Phys.,
12(2), pp. 155–164.

[CrossRef]
Biot,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range,” J. Acoust. Soc. Am.,
28(2), pp. 168–178.

[CrossRef]
Biot,
M. A.
, 1962, “
Mechanics of Deformation and Acoustic Propagation in Porous Media,” J. Appl. Phys.,
33(4), pp. 1482–1498.

[CrossRef]
Biot,
M. A.
, 1962, “
Generalized Theory of Acoustic Propagation in Porous Dissipative Media,” J. Acoust. Soc. Am.,
34, pp. 1254–1264.

[CrossRef]
Morse,
P. M.
, and
Feshbach,
H.
, 1953, Methods of Theoretical Physics,
McGraw-Hill,
New York.

Riewe,
F.
, 1996, “
Nonconservative Lagrangian and Hamiltonian Mechanics,” Phys. Rev. E,
53(2), pp. 1890–1899.

[CrossRef]
Riewe,
F.
, 1997, “
Mechanics With Fractional Derivatives,” Phys. Rev. E,
55(3), pp. 3581–3592.

[CrossRef]
Kaufman,
A. N.
, 1984, “
Dissipative Hamiltonian Systems: A Unifying Principle,” Phys. Lett. A,
100(8), pp. 419–422.

[CrossRef]
Morrison,
P. J.
, 1984, “
Bracket Formulation for Irreversible Classical Fields,” Phys. Lett. A,
100(8), pp. 423–427.

[CrossRef]
Grmela,
M.
, 1984, “
Bracket Formulation of Dissipative Fluid Mechanics Equations,” Phys. Lett. A,
102(8), pp. 355–358.

[CrossRef]
Beris,
A. N.
, and
Edwards,
B. J.
, 1994, Thermodynamics of Flowing Systems With Internal Microstructure,
Oxford University Press,
New York.

Grmela,
M.
, and
Ottinger,
H. C.
, 1997, “
Dynamics and Thermodynamics of Complex Fluids. I. Development of a General Formalism,” Phys. Rev. E,
56(6), pp. 6620–6632.

[CrossRef]
Ottinger,
H. C.
, and
Grmela,
M.
, 1997, “
Dynamics and Thermodynamics of Complex Fluids. II. Illustrations of a General Formalism,” Phys. Rev. E,
56(6), pp. 6633–6655.

[CrossRef]
Grmela,
M.
, 2014, “
Contact Geometry of Mesoscopic Thermodynamics and Dynamics,” Entropy,
16(3), pp. 1652–1686.

[CrossRef]
Grmela,
M.
, 2015, “
Geometry of Multiscale Nonequilibrium Thermodynamics,” Entropy,
17(9), pp. 5938–5964.

[CrossRef]
Apostolakis,
G.
, and
Dargush,
G. F.
, 2013, “
Mixed Variational Principles for Dynamic Response of Thermoelastic and Poroelastic Continua,” Int. J. Solids Struct.,
50(5), pp. 642–650.

[CrossRef]
Predeleanu,
M.
, 1984, “
Development of Boundary Element Method to Dynamic Problems for Porous Media,” Appl. Math. Modell.,
8(6), pp. 378–382.

[CrossRef]
Manolis,
G. D.
, and
Beskos,
D. E.
, 1989, “
Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity,” Acta Mech.,
76, pp. 89–104.

[CrossRef]
Simon,
B. R.
,
Zienkiewicz,
O. C.
, and
Paul,
D. K.
, “
An Analytical Solution for the Transient Response of Saturated Porous Elastic Solids,” Int. J. Numer. Anal. Methods Geomech.,
8(4), pp. 381–398.

[CrossRef]
Sivaselvan,
M. V.
, and
Reinhorn,
A. M.
, 2006, “
Lagrangian Approach to Structural Collapse Simulation,” ASCE J. Eng. Mech.,
132(8), pp. 795–805.

[CrossRef]
Sivaselvan,
M. V.
,
Lavan,
O.
,
Dargush,
G. F.
,
Kurino,
H.
,
Hyodo,
Y.
,
Fukuda,
R.
,
Sato,
K.
,
Apostolakis,
G.
, and
Reinhorn,
A. M.
, 2009, “
Numerical Collapse Simulation of Large-Scale Structural Systems Using an Optimization-Based Algorithm,” Earthquake Eng. Struct. Dyn.,
38(5), pp. 655–677.

[CrossRef]
Apostolakis,
G.
, and
Dargush,
G. F.
, 2012, “
Mixed Lagrangian Formulation for Linear Thermoelastic Response of Structures,” ASCE J. Eng. Mech.,
138(5), pp. 508–518.

[CrossRef]
Oldham,
K. B.
, and
Spanier,
J.
, 1974, The Fractional Calculus,
Academic Press,
New York.

Samko,
S. G.
,
Kilbas,
A. A.
, and
Marichev,
O. I.
, 1993, Fractional Integrals and Derivatives,
Gordon and Breach Science Publishers,
Switzerland.

Darrall,
B. T.
, and
Dargush,
G. F.
, 2015, “
Mixed Convolved Action Principles for Dynamics of Linear Poroelastic Continua,” ASME Paper No. IMECE2015-52728.

Kane,
C.
,
Marsden,
J. E.
, and
Ortiz,
M.
, 1999, “
Symplectic-Energy-Momentum Preserving Variational Integrators,” J. Math. Phys.,
40(7), pp. 3357–3371.

[CrossRef]
Kane,
C.
,
Marsden,
J. E.
,
Ortiz,
M.
, and
West,
M.
, 2000, “
Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems,” Int. J. Numer. Methods Eng.,
49(10), pp. 1295–1325.

[CrossRef]
Marsden,
J. E.
, and
West,
M.
, 2001, “
Discrete Mechanics and Variational Integrators,” Acta Numer.,
10, pp. 357–514.

[CrossRef]
Bathe,
K. J.
, 1996, Finite Element Procedures,
Prentice Hall,
Englewood Cliffs, NJ.

Zienkiewicz,
O. C.
,
Taylor,
R. L.
, and
Zhu,
J. Z.
, 2013, The Finite Element Method: Its Basis and Fundamentals,
Butterworth-Heinemann,
Oxford, UK.

Chen,
J.
, and
Dargush,
G. F.
, 1995, “
Boundary Element Method for Poroelastic and Thermoelastic Analyses,” Int. J. Solids Struct.,
32(15), pp. 2257–2278.

[CrossRef]