0
Research Papers

Deformation of Pyramidal PDMS Stamps During Microcontact Printing

[+] Author and Article Information
Congrui Jin

Department of Mechanical Engineering,
State University of New York at Binghamton,
Binghamton, NY 13902
e-mail: cjin@binghamton.edu

Qichao Qiao

Department of Mechanical Engineering,
State University of New York at Binghamton,
Binghamton, NY 13902

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received March 14, 2016; final manuscript received April 8, 2016; published online May 11, 2016. Editor: Yonggang Huang.

J. Appl. Mech 83(7), 071011 (May 11, 2016) (9 pages) Paper No: JAM-16-1143; doi: 10.1115/1.4033432 History: Received March 14, 2016; Revised April 08, 2016

Microcontact printing (MicroCP) is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact. Pyramidal PDMS stamps have received a lot of attention in the research community in recent years, due to the fact that the use of the pyramidal architecture has multiple advantages over traditional rectangular and cylindrical PDMS stamps. To better understand the dynamic MicroCP process involving pyramidal PDMS stamps, in this paper, numerical studies on frictionless adhesive contact between pyramidal PDMS stamps and transversely isotropic materials are presented. We use a numerical simulation method in which the adhesive interactions are represented by an interaction potential and the surface deformations are coupled by using half-space Green's functions discretized on the surface. It shows that for pyramidal PDMS stamps, the contact area increases significantly with increasing applied load, and thus, this technique is expected to provide a simple, efficient, and low-cost method to create variable two-dimensional arrays of dot chemical patterns for nanotechnology and biotechnology applications. The DMT-type and Johnson–Kendall–Roberts (JKR)-type-to-DMT-type transition regimes have been explored by conducting the simulations using smaller values of Tabor parameters.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bernard, A. , Delamarche, E. , Schmid, H. , Michel, B. , Bosshard, H. R. , and Biebuyck, H. , 1998, “ Printing Patterns of Proteins,” Langmuir, 14(9), pp. 2225–2229. [CrossRef]
Bernard, A. , Renault, J. P. , Michel, B. , Bosshard, H. R. , and Delamarche, E. , 2000, “ Microcontact Printing of Proteins,” Adv. Mater., 12(14), pp. 1067–1070. [CrossRef]
Delamarche, E. , Donzel, C. , Kamounah, F. S. , Wolf, H. , Geissler, M. , Stutz, R. , Schmidt-Winkel, P. , Michel, B. , Mathieu, H. J. , and Schaumburg, K. , 2003, “ Microcontact Printing Using Poly(Dimethylsiloxane) Stamps Hydrophilized by Poly(Ethylene Oxide) Silanes,” Langmuir, 19(21), pp. 8749–8758. [CrossRef]
Delamarche, E. , Schmid, H. , Michel, B. , and Biebuyck, H. , 1997, “ Stability of Molded Polydimethylsiloxane Microstructures,” Adv. Mater., 9(9), pp. 741–746. [CrossRef]
Kumar, A. , Biebuyck, H. A. , and Whitesides, G. M. , 1994, “ Patterning Self-Assembled Monolayers—Applications in Materials Science,” Langmuir, 10(5), pp. 1498–1511. [CrossRef]
Kane, R. S. , Takayama, S. , Ostuni, E. , Ingber, D. E. , and Whitesides, G. M. , 1999, “ Patterning Proteins and Cells Using Soft Lithography,” Biomaterials, 20(23–24), pp. 2363–2376. [CrossRef] [PubMed]
Thiebaud, P. , Lauer, L. , Knoll, W. , and Offenhausser, A. , 2002, “ PDMS Device for Patterned Application of Microfluids to Neuronal Cells Arranged by Microcontact Printing,” Biosens. Bioelectron., 17(1–2), pp. 87–93. [CrossRef] [PubMed]
Nicolau, D. V. , Taguchi, T. , Tanigawa, H. , and Yoshikawa, S. , 1996, “ Control of the Neuronal Cell Attachment by Functionality Manipulation of Diazonaphthoquinone/Novolak Photoresist Surface,” Biosens. Bioelectron., 11(12), pp. 1237–1252. [CrossRef]
Amirpour, M. L. , Ghosh, P. , Lackowski, W. M. , Crooks, R. M. , and Pishko, M. V. , 2001, “ Mammalian Cell Cultures on Micropatterned Surfaces of Weak-Acid, Polyelectrolyte Hyperbranched Thin Films on Gold,” Anal. Chem., 73(7), pp. 1560–1566. [CrossRef] [PubMed]
Ghosh, M. , Alves, C. , Tong, Z. , Tettey, K. , Konstantopoulos, K. , and Stebe, K. J. , 2008, “ Multifunctional Surfaces With Discrete Functionalized Regions for Biological Applications,” Langmuir, 24(15), pp. 8134–8142. [CrossRef] [PubMed]
Didar, T. F. , Foudeh, A. M. , and Tabrizian, M. , 2012, “ Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel,” Anal. Chem., 84(2), pp. 1012–1018. [CrossRef] [PubMed]
Hoshino, K. , Bhave, G. , Ng, E. , and Zhang, X. J. , 2014, “ Micro Patterned Quantum Dots Excitation and Imaging for Cellular Microarray Screening,” Sens. Actuators A, 216, pp. 301–307. [CrossRef]
Huang, Y. G. , Zhou, W. X. , Hsia, K. J. , Menard, E. , Park, J. U. , Rogers, J. A. , and Alleyne, A. G. , 2005, “ Stamp Collapse in Soft Lithography,” Langmuir, 21(17), pp. 8058–8068. [CrossRef] [PubMed]
Zhou, W. , Huang, Y. , Menard, E. , Aluru, N. R. , Rogers, J. A. , and Alleyne, A. G. , 2005, “ Mechanism for Stamp Collapse in Soft Lithography,” Appl. Phys. Lett., 87(25), p. 251925. [CrossRef]
Decré, M. M. J. , Timmermans, P. H. M. , Van Der Sluis, O. , and Schroeders, R. , 2005, “ Numerical and Experimental Study of Critical Roof Collapse Conditions in Soft Lithography,” Langmuir, 21(17), pp. 7971–7978. [CrossRef] [PubMed]
Hui, C. Y. , Jagota, A. , Lin, Y. Y. , and Kramer, E. J. , 2002, “ Constraints on Microcontact Printing Imposed by Stamp Deformation,” Langmuir, 18(4), pp. 1394–1407. [CrossRef]
Bietsch, A. , and Michel, B. , 2000, “ Conformal Contact and Pattern Stability of Stamps Used for Soft Lithography,” J. Appl. Phys., 88(7), pp. 4310–4318. [CrossRef]
Petrzelka, J. E. , and Hardt, D. E. , 2012, “ Static Load-Displacement Behavior of PDMS Microfeatures for Soft Lithography,” J. Micromech. Microeng., 22(7), p. 075015. [CrossRef]
Jagota, A. , Sharp, K. G. , and Kristunas, D. F. , 2002, “ Stamp Deformation During Microcontact Printing,” MRS Proc., 728, p. S8.41.
Saeidpourazar, R. , Li, R. , Li, Y. H. , Sangid, M. D. , Lu, C. F. , Huang, Y. G. , and Rogers, J. A. , 2012, “ Laser-Driven Micro-Transfer Placement of Prefabricated Microstructures,” J. Microelectromech. Syst., 21(5), pp. 1049–1058. [CrossRef]
Li, R. , Li, Y. , Lu, C. , Song, J. , Saeidpouraza, R. , Fang, B. , Zhong, Y. , Ferreira, P. M. , Rogers, J. A. , and Huang, Y. , 2012, “ Thermo-Mechanical Modeling of Laser-Driven Non-Contact Transfer Printing: Two-Dimensional Analysis,” Soft Matter, 8(27), pp. 7122–7127. [CrossRef]
Filipponi, L. , Sawant, P. D. , Fulga, F. , and Nicolau, D. V. , 2009, “ Microbeads on Microposts: An Inverted Architecture for Bead Microarrays,” Biosens. Bioelectron., 24(7), pp. 1850–1857. [CrossRef] [PubMed]
Hong, J. M. , Ozkeskin, F. M. , and Zou, J. , 2008, “ A Micromachined Elastomeric Tip Array for Contact Printing With Variable Dot Size and Density,” J. Micromech. Microeng., 18(1), p. 015003. [CrossRef]
Schwinger, W. , Lausecker, E. , Bergmair, I. , Grydlik, M. , Fromherz, T. , Hasenfuß, C. , and Schöftner, R. , 2008, “ Fabrication of Nano-Gold Islands With μm Spacing Using 2.5 Dimensional PDMS Stamps,” Microelectron. Eng., 85(5–6), pp. 1346–1349. [CrossRef]
Filipponi, L. , Livingston, P. , Kašpar, O. , Tokárová, V. , and Nicolau, D. V. , 2016, “ Protein Patterning by Microcontact Printing Using Pyramidal PDMS Stamps,” Biomed. Microdevices, 18(9).
Sharp, K. G. , Blackman, G. S. , Glassmaker, N. J. , Jagota, A. , and Hui, C. Y. , 2004, “ Effect of Stamp Deformation on the Quality of Microcontact Printing: Theory and Experiment,” Langmuir, 20(15), pp. 6430–6438. [CrossRef] [PubMed]
Gao, X.-L. , and Mao, C. L. , 2013, “ Solution of the Contact Problem of a Rigid Conical Frustum Indenting a Transversely Isotropic Elastic Half-Space,” ASME J. Appl. Mech., 81(4), p. 041007. [CrossRef]
Tang, T. , Hui, C. Y. , Jagota, A. , and Chaudhury, M. K. , 2006, “ Thermal Fluctuations Limit the Adhesive Strength of Compliant Solids,” J. Adhes., 82(7), pp. 671–696. [CrossRef]
Derjaguin, B. V. , 1934, “ Untersuchungen über die Reibung und Adhäsion, IV,” Theor. Anhaftens Kleiner Teilchen Kolloid Z, 69(2), pp. 155–164. [CrossRef]
Greenwood, J. A. , 1997, “ Adhesion of Elastic Spheres,” Proc. R. Soc. London Ser. A, 453(1961), pp. 1277–1297. [CrossRef]
Feng, J. Q. , 2000, “ Contact Behavior of Spherical Elastic Particles: A Computational Study of Particle Adhesion and Deformations,” Colloids Surf. A, 172(1–3), pp. 175–198. [CrossRef]
Wu, J. J. , 2006, “ The Numerical Analyses on Elliptical Adhesive Contact,” J. Phys. D, 39(9), pp. 1899–1907. [CrossRef]
Jin, C. , 2016, “ Numerical Investigation of Indentation Tests on a Transversely Isotropic Elastic Material by Power-Law Shaped Axisymmetric Indenters,” J. Adhes. Sci. Technol., 30(11), pp. 1223–1242. [CrossRef]
Tabor, D. , 1977, “ Surface Forces and Surface Interactions,” J. Colloid Interface Sci., 58(1), pp. 2–3. [CrossRef]
Johnson, K. L. , 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
Fafard, M. , and Massicotte, B. , 1993, “ Geometrical Interpretation of the Arc-Length Method,” Comput. Struct., 46(4), pp. 603–615. [CrossRef]
Lotters, J. C. , Olthuis, W. , Veltink, P. H. , and Bergveld, P. , 1997, “ The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsiloxane for Sensor Applications,” J. Micromech. Microeng., 7(3), pp. 145–147. [CrossRef]
Tafazzoli, A. , Pawashe, C. , and Sitti, M. , 2006, “ Force-Controlled Microcontact Printing Using Microassembled Particle Templates,” IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, May 15–19, pp. 263–268.
Jin, C. , Khare, K. , Vajpayee, S. , Yang, S. , Jagota, A. , and Hui, C. Y. , 2011, “ Adhesive Contact Between a Rippled Elastic Surface and a Rigid Spherical Indenter: From Partial to Full Contact,” Soft Matter, 7(22), pp. 10728–10736. [CrossRef]
Kohn, J. C. , and Ebenstein, D. M. , 2013, “ Eliminating Adhesion Errors in Nanoindentation of Compliant Polymers and Hydrogels,” J. Mech. Behav. Biomed. Mater., 20, pp. 316–326. [CrossRef] [PubMed]
Wang, Z. , Volinsky, A. A. , and Gallant, N. D. , 2015, “ Nanoindentation Study of Polydimethylsiloxane Elastic Modulus Using Berkovich and Flat Punch Tips,” J. Appl. Polym. Sci., 132(5), p. 41384. [CrossRef]
Kaufman, J. D. , and Klapperich, C. M. , 2009, “ Surface Detection Errors Cause Overestimation of the Modulus in Nanoindentation on Soft Materials,” J. Mech. Behav. Biomed. Mater., 2(4), pp. 312–317. [CrossRef] [PubMed]
Cao, Y. F. , Yang, D. H. , and Soboyejoy, W. , 2005, “ Nanoindentation Method for Determining the Initial Contact and Adhesion Characteristics of Soft Polydimethylsiloxane,” J. Mater. Res., 20(08), pp. 2004–2011. [CrossRef]
Ebenstein, D. M. , 2011, “ Nano-JKR Force Curve Method Overcomes Challenges of Surface Detection and Adhesion for Nanoindentation of a Compliant Polymer in Air and Water,” J. Mater. Res., 26(08), pp. 1026–1035. [CrossRef]
Derjaguin, B. V. , Muller, V. M. , and Toporov, Y. P. , 1975, “ Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., 53(2), pp. 314–326. [CrossRef]
Seol, M. L. , Lee, S. H. , Han, J. W. , Kim, D. , Cho, G. H. , and Choi, Y. K. , 2015, “ Impact of Contact Pressure on Output Voltage of Triboelectric Nanogenerator Based on Deformation of Interfacial Structures,” Nano Energy, 17, pp. 63–71. [CrossRef]
Fan, F. R. , Tian, Z. Q. , and Wang, Z. L. , 2012, “ Flexible Triboelectric Generator,” Nano Energy, 1(2), pp. 328–334. [CrossRef]
Yang, Y. , Zhu, G. , Zhang, H. , Chen, J. , Zhong, X. , Lin, Z.-H. , Su, Y. , Bai, P. , Wen, X. , and Wang, Z. L. , 2013, “ Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System,” ACS Nano, 7(10), pp. 9461–9468. [CrossRef] [PubMed]
Fan, F. R. , Lin, L. , Zhu, G. , Wu, W. , Zhang, R. , and Wang, Z. L. , 2012, “ Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films,” Nano Lett., 12(6), pp. 3109–3114. [CrossRef] [PubMed]
Fischer-Cripps, A. C. , 2002, Nanoindentation, Springer, New York.
Giannakopoulos, A. E. , 2006, “ Elastic and Viscoelastic Indentation of Flat Surfaces by Pyramid Indentors,” J. Mech. Phys. Solids, 54(7), pp. 1305–1332. [CrossRef]
Jagota, A. , and Argento, C. , 1997, “ An Intersurface Stress Tensor,” J. Colloid Interface Sci., 191(2), pp. 326–336. [CrossRef] [PubMed]
Yu, N. , and Polycarpou, A. , 2004, “ Adhesive Contact Based on the Lennard–Jones Potential: A Correction to the Value of the Equilibrium Distance as Used in the Potential,” J. Colloid Interface Sci., 278(2), pp. 428–435. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The parameter ho is the initial air gap, i.e., the separation of the surfaces in the absence of applied and adhesive forces, and then due to surface interaction as well as the external loads, the surfaces will deform and the separation between the two points will change from ho to h. α is the displacement (in the z direction) at infinity of body 1 with respect to body 2.

Grahic Jump Location
Fig. 2

A right square pyramid with a base size of m×m and a height of n has been used in the simulation

Grahic Jump Location
Fig. 3

(a) The normalized force versus the normalized displacement curves for the monomial indenters with different values of d and (b) the normalized force f¯ versus the normalized contact radius c¯ curves. It shows that our numerical results agree very well with the analytical solutions, and the magnitude of the normalized pull-off force is monotonically increasing with increasing d.

Grahic Jump Location
Fig. 4

The force f versus the displacement α curves for the pyramidal PDMS stamp with five different values of n

Grahic Jump Location
Fig. 5

Normalized pressure distributions P for the printing substrate pressed by the pyramidal PDMS stamp when the normalized indentation depth: (a) D = 1.0 and (b) D = 9.0 during approach. The normalized contact region length obtained directly from the numerical simulation is denoted by Lc=|2Xc|=|2Yc|, where (Xc, Yc) is the coordinate for the tensile peak stress at the corner of the contact area.

Grahic Jump Location
Fig. 6

The contact region length lc versus the force f curves for the pyramidal PDMS stamp with five different values of n. It also shows the comparison between our numerical results and the experimental data provided by Li et al. [21].

Grahic Jump Location
Fig. 7

The contact region length lc versus the displacement α curves for the pyramidal PDMS stamp with five different values of n

Grahic Jump Location
Fig. 8

The normalized force F versus the normalized displacement D curves for the pyramidal PDMS stamps using different values of Tabor parameters

Grahic Jump Location
Fig. 9

The normalized contact region length Lc versus the normalized force F curves for the pyramidal PDMS stamps using different values of Tabor parameters

Grahic Jump Location
Fig. 10

The normalized contact region length Lc versus the normalized displacement D curves for the pyramidal PDMS stamps using different values of Tabor parameters

Grahic Jump Location
Fig. 11

Normalized pressure distributions P for the printing substrate pressed by the pyramidal PDMS stamp when the normalized indentation depth D = 9.0 during approach with four different values of Tabor parameter: (a) μ  = 0.1, (b) μ  = 0.4, (c) μ  = 0.6, and (d) μ  = 0.8

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In