0
Research Papers

The Effective Modulus of Random Checkerboard Plates

[+] Author and Article Information
Leon S. Dimas

Laboratory for Atomistic and Molecular Mechanics (LAMM),
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139;
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139

Daniele Veneziano

Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics (LAMM),
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139;
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
e-mail: mbuehler@MIT.EDU

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received August 25, 2015; final manuscript received October 2, 2015; published online November 5, 2015. Editor: Yonggang Huang.

J. Appl. Mech 83(1), 011007 (Nov 05, 2015) (12 pages) Paper No: JAM-15-1450; doi: 10.1115/1.4031744 History: Received August 25, 2015; Revised October 02, 2015

We investigate the elastic effective modulus Eeff of two-dimensional checkerboard specimens in which square tiles are randomly assigned to one of two component phases. This is a model system for a wide class of multiphase polycrystalline materials such as granitic rocks and many ceramics. We study how the effective stiffness is affected by different characteristics of the specimen (size relative to the tiles, stiff fraction, and modulus contrast between the phases) and obtain analytical approximations to the probability distribution of Eeff as a function of these parameters. In particular, we examine the role of percolation of the soft and stiff phases, a phenomenon that is important in polycrystalline materials and composites with inclusions. In small specimens, we find that the onset of percolation causes significant discontinuities in the effective modulus, whereas in large specimens, the influence of percolation is smaller and gradual. The analysis is an extension of the elastic homogenization methodology of Dimas et al. (2015, “Random Bulk Properties of Heterogeneous Rectangular Blocks With Lognormal Young's Modulus: Effective Moduli,” ASME J. Appl. Mech., 82(1), p. 011003), which was devised for blocks with lognormal spatial variation of the modulus. Results are validated through Monte Carlo simulation. Compared with lognormal specimens with comparable first two moments, checkerboard plates have more variable effective modulus and are on average less compliant if there is prevalence of stiff tiles and more compliant if there is prevalence of soft tiles. These differences are linked to percolation.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Beran, M. J. , 1968, Statistical Continuum Theories. Monographs in Statistical Physics and Thermodynamics, Vol. XV, Interscience Publishers, New York, p. 424.
Kachanov, M. , and Sevostianov, I. , 2013, Effective Properties of Heterogeneous Materials, Vol. 193, Springer, Dordrecht.
Nemat-Nasser, S. and Hori, M. , 1993, Micromechanics: Overall Properties of Heterogeneous Materials (North-Holland Series in Applied Mathematics and Mechanics), North-Holland, New York, p. 687.
Sanchez-Palencia, E. , and Zaoui, A. , 1985, Homogenization Techniques for Composite Media (Lectures Delivered at the CISM International Center for Mechanical Sciences), Springer, Berlin, p. 397.
Torquato, S. , 2002, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Vol. 16, Springer, New York.
Dimas, L. S. , Veneziano, D. , Giesa, T. , and Buehler, M. J. , 2015, “ Random Bulk Properties of Heterogeneous Rectangular Blocks With Lognormal Young's Modulus: Effective Moduli,” ASME J. Appl. Mech., 82(1), p. 011003. [CrossRef]
Balland, M. , Desprat, N. , Icard, D. , Fereol, S. , Asnacios, A. , Browaeys, J. , Henon, S. , and Gallet, F. , 2006, “ Power Laws in Microrheology Experiments on Living Cells: Comparative Analysis and Modeling,” Phys. Rev. E, 74(2), p. 021911. [CrossRef]
Cheung, M. S. , and Li, W. C. , 2003, “ Probabilistic Fatigue and Fracture Analyses of Steel Bridges,” Struct. Saf., 25(3), pp. 245–262. [CrossRef]
Geyskens, P. , Der Kiureghian, A. , and Monteiro, P. , 1998, “ Bayesian Prediction of Elastic Modulus of Concrete,” ASCE J. Struct. Eng., 124(1), pp. 89–95. [CrossRef]
Hiratsuka, S. , Mizutani, Y. , Tsuchiya, M. , Kawahara, K. , Tokumoto, H. , and Okajima, T. , 2009, “ The Number Distribution of Complex Shear Modulus of Single Cells Measured by Atomic Force Microscopy,” Ultramicroscopy, 109(8), pp. 937–941. [CrossRef] [PubMed]
Ulm, F. J. , Vandamme, M. , Bobko, C. , and Ortega, J. A. , 2007, “ Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale,” J. Am. Ceram. Soc., 90(9), pp. 2677–2692. [CrossRef]
Gupta, H. S. , Stachewicz, U. , Wagermaier, W. , Roschger, P. , Wagner, H. D. , and Fratzl, P. , 2006, “ Mechanical Modulation at the Lamellar Level in Osteonal Bone,” J. Mater. Res., 21(8), pp. 1913–1921. [CrossRef]
Younis, S. , Kauffmann, Y. , Bloch, L. , and Zolotoyabko, E. , 2012, “ Inhomogeneity of Nacre Lamellae on the Nanometer Length Scale,” Cryst. Growth Des., 12(9), pp. 4574–4579. [CrossRef]
Nachtrab, S. , Kapfer, S. C. , Arns, C. H. , Madadi, M. , Mecke, K. , and Schroder-Turk, G. E. , 2011, “ Morphology and Linear-Elastic Moduli of Random Network Solids,” Adv. Mater., 23(22–23), pp. 2633–2637. [CrossRef] [PubMed]
Soulie, R. , Merillou, E. , Romain, O. , Djamchid, T. , and Ghazanfarpour, R. , 2007, “ Modeling and Rendering of Heterogeneous Granular Materials: Granite Application,” Comput. Graph Forum, 26(1), pp. 66–79. [CrossRef]
Fan, Z. G. , Wu, Y. G. , Zhao, X. H. , and Lu, Y. Z. , 2004, “ Simulation of Polycrystalline Structure With Voronoi Diagram in Laguerre Geometry Based on Random Closed Packing of Spheres,” Comput. Mater. Sci., 29(3), pp. 301–308. [CrossRef]
Kumar, S. , and Kurtz, S. K. , 1994, “ Simulation of Material Microstructure Using a 3D Voronoi Tessellation—Calculation of Effective Thermal-Expansion Coefficient of Polycrystalline Materials,” Acta Metall. Mater., 42(12), pp. 3917–3927. [CrossRef]
Keller, J. B. , 1987, “ Effective Conductivity of Periodic Composites Composed of Two Very Unequal Conductors,” J. Math. Phys., 28(10), pp. 2516–2520. [CrossRef]
Kirkpatrick, S. , 1973, “ Percolation and Conduction,” Rev. Mod. Phys., 45(4), pp. 574–588. [CrossRef]
Landauer, R. , 1978, “ Electrical Conductivity in Inhomogeneous Media,” Electrical Transport and Optical Properties of Inhomogeneous Media, AIP Conf. Proc., 40, pp. 2–45..
Sheng, P. , 1980, “ Theory for the Dielectric Function of Granular Composite Media,” Phys. Rev. Lett., 45(1), pp. 60–63. [CrossRef]
Sheng, P. , and Kohn, R. V. , 1982, “ Geometric Effects in Continuous-Media Percolation,” Phys. Rev. B, 26(3), pp. 1331–1335. [CrossRef]
Berlyand, L. , and Golden, K. , 1994, “ Exact Result for the Effective Conductivity of a Continuum Percolation Model,” Phys. Rev. B, 50(4), pp. 2114–2117. [CrossRef]
Chen, Y. , and Schuh, C. A. , 2009, “ Effective Transport Properties of Random Composites: Continuum Calculations Versus Mapping to a Network,” Phys. Rev. E, 80(4), p. 040103. [CrossRef]
Malarz, K. , and Galam, S. , 2005, “ Square-Lattice Site Percolation at Increasing Ranges of Neighbor Bonds,” Phys. Rev. E, 71(1), p. 016125. [CrossRef]
Veneziano, D. , 2003, Computational Fluid and Solid Mechanics, Elsevier, Cambridge, MA.
Berggren, S. A. , Lukkassen, D. , Meidell, A. , and Simula, L. , 2001, “ A New Method for Numerical Solution of Checkerboard Fields,” J. Appl. Math., 1(4), pp. 157–173. [CrossRef]
Helsing, J. , 2011, “ The Effective Conductivity of Arrays of Squares: Large Random Unit Cells and Extreme Contrast Ratios,” J. Comput. Phys., 230(20), pp. 7533–7547. [CrossRef]
Milton, G. W. , 2002, “ The Theory of Composites,” Cambridge Monographs on Applied and Computational Mathematics, Vol. XXVIII, Cambridge University Press, Cambridge, p. 719.

Figures

Grahic Jump Location
Fig. 1

Illustration of checkerboard systems and boundary conditions. This is a model system for several polycrystalline systems such as granitic rocks and ceramic materials.

Grahic Jump Location
Fig. 2

Examples of ANOVA decomposition of the log-modulus field: (a) {L, p, Δ}={4, 0.5, 1} and (b) {L, p, Δ}={32, 0.25, 1}. F¯ is the spatial average of the log-modulus field, ε1 and ε2 are the marginal fluctuations in the x1- and x2-directions, respectively, ε12 is the second-order fluctuation of F, and F1=F¯+ε1+ε2 is the first-order approximation of the modulus field F.

Grahic Jump Location
Fig. 3

Comparison of q12 values for lng=ε12 and lng=F−F¯ when L=4, Δ=4, and the stiff volume fraction f progressively increases from 0 to 1 in 1/16 increments

Grahic Jump Location
Fig. 4

Contribution of various ANOVA components to the total effective log-stiffness Feff for (a) L=4 and (b) L=32. In each case Δ = 4. Through numerical simulation, we find the contribution of each term on the right-hand side of Eq. (5) as the stiff volume fraction f progressively increases from 0 to 1 in 1/16 increments. See text for an explanation of the different components.

Grahic Jump Location
Fig. 5

Three simulations of Feff(f) for systems with L=4 and Δ=4. The first two columns show the first (NN+NNN)- and NN-percolating clusters. The points along the Feff(f) trajectory at which these percolating clusters form are shown with matching colors. The vertical dashed lines indicate the theoretical percolation thresholds.

Grahic Jump Location
Fig. 6

Same as Fig. 5 for L=32. For L=32, the Feff(f) plots are almost deterministic; hence, we display only one simulation.

Grahic Jump Location
Fig. 7

(a) Dependence of q12 on fs for L=32 and Δ={1,2,3,4}. (b) Dependence of q12 on f for L={4,8,16,32} and Δ={1,2,3,4} along with regression lines from Eq. (7). (c) Values of c(L) in Eq. (6) for L={4,8,16,32} and values of σq12(L) for L={4,8,16,32}, with least-squares fits.

Grahic Jump Location
Fig. 8

Scatter plots of single-value predicted and simulated Feff for L={4,8,16,32}, f={0.1,0.3,0.6,0.9}, and Δ={2,4}

Grahic Jump Location
Fig. 9

Comparison of approximate analytical and empirical cumulative distributions of Feff for L={4,8,16,32}, p={0.1,0.3,0.6,0.9}, and Δ={2,4}

Grahic Jump Location
Fig. 10

Dependence of Feff on σF2 for large checkerboard and lognormal specimens with mE=1. For checkerboard materials, results are presented for three values of the stiff fraction f. Checkerboard results are shown as solid lines. The dashed lines give hybrid results when the exponent q12 is from checkerboard analysis but the marginal distribution of the modulus is assumed to be lognormal. The dashed middle line is also the log-effective stiffness in the lognormal case. Small panels compare the checkerboard (binary) and normal marginal distributions of F for σF2=0.25 and f={0.1,0.5,0.9}.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In