0
Research Papers

Fluid–Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades

[+] Author and Article Information
Y. Bazilevs

Department of Structural Engineering,
University of California–San Diego,
La Jolla, CA 92093
e-mail: yuri@ucsd.edu

A. Korobenko, X. Deng, J. Yan

Department of Structural Engineering,
University of California–San Diego,
La Jolla, CA 92093

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received February 18, 2016; final manuscript received March 17, 2016; published online April 6, 2016. Editor: Yonggang Huang.

J. Appl. Mech 83(6), 061010 (Apr 06, 2016) (9 pages) Paper No: JAM-16-1092; doi: 10.1115/1.4033080 History: Received February 18, 2016; Revised March 17, 2016

This work presents a collection of advanced computational methods, and their coupling, that enable prediction of fatigue-damage evolution in full-scale composite blades of wind turbines operating at realistic wind and rotor speeds. The numerical methodology involves: (1) a recently developed and validated fatigue-damage model for multilayer fiber-reinforced composites; (2) a validated coupled fluid–structure interaction (FSI) framework, wherein the 3D time-dependent aerodynamics based on the Navier–Stokes equations of incompressible flows is computed using a finite-element-based arbitrary Lagrangian–Eulerian–variational multiscale (ALE–VMS) technique, and the blade structures are modeled as rotation-free isogeometric shells; and (3) coupling of the FSI and fatigue-damage models. The coupled FSI and fatigue-damage formulations are deployed on the Micon 13M wind turbine equipped with the Sandia CX-100 blades. Damage initiation, damage progression, and eventual failure of the blades are reported.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sutherland, H. , 1999, “ On the Fatigue Analysis of Wind Turbines,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND99-0089.
Griffith, T. , 2015, “ Structural Health and Prognostics Management for Offshore Wind Plants: Final Report of Sandia Research and Developments Activities,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND2015-2593.
Bazilevs, Y. , Deng, X. , Korobenko, A. , di Scalea, F. L. , Todd, M. , and Taylor, S. , 2015, “ Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data,” ASME J. Appl. Mech., 82(9), p. 091008. [CrossRef]
Darema, F. , 2004, “ Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements,” 4th International Conference on Computational Science (ICCS 2004), Kraków, Poland, June 6–9, pp. 662–669.
Oden, J. T. , Diller, K. R. , Bajaj, C. , Browne, J. C. , Hazle, J. , Babuska, I. , Bass, J. , Demkowicz, L. , Feng, Y. , Fuentes, D. , Prudhomme, S. , Rylander, M. N. , Stafford, R. J. , and Zhang, Y. , 2007, “ Dynamic Data-Driven Finite Element Models for Laser Treatment of Prostate Cancer,” Num. Methods PDE, 23(4), pp. 904–922. [CrossRef]
Bazilevs, Y. , Marsden, A. , di Scalea, F. L. , Majumdar, A. , and Tatineni, M. , 2012, “ Toward a Computational Steering Framework for Large-Scale Composite Structures Based on Continually and Dynamically Injected Sensor Data,” Procedia Comput. Sci., 9, pp. 1149–1158. [CrossRef]
Allaire, D. , Biros, G. , Chambers, J. , Kordonowy, D. , Ghattas, O. , and Wilcox, K. , 2012, “ Dynamic Data Driven Methods for Self-Aware Aerospace Vehicles,” Procedia Comput. Sci., 9, pp. 1206–1210. [CrossRef]
Allaire, D. , Chambers, J. , Cowlagi, R. , Kordonowy, D. , Lecerf, M. , Mainini, L. , Ulker, D. , and Wilcox, K. , 2013, “ An Offline/Online DDDAS Capability for Self-Aware Aerospace Vehicles,” Procedia Comput. Sci., 18, pp. 1959–1968. [CrossRef]
Degrieck, J. , and Paepegem, W. V. , 2001, “ Fatigue Damage Modelling of Fiber-Reinforced Composite Materials: Review,” Appl. Mech. Rev., 54(4), pp. 279–300. [CrossRef]
Raghavan, P. , Li, S. , and Ghosh, S. , 2004, “ Two Scale Response and Damage Modeling of Composite Materials,” Finite Element Anal. Des., 40(12), pp. 1619–1640. [CrossRef]
Swaminathan, S. , Ghosh, S. , and Pagano, N. J. , 2006, “ Statistically Equivalent Representative Volume Elements for Composite Microstructures: Part I—Without Damage,” J. Compos. Mater., 40(7), pp. 583–604. [CrossRef]
Swaminathan, S. , and Ghosh, S. , 2006, “ Statistically Equivalent Representative Volume Elements for Composite Microstructures: Part II—With Evolving Damage,” J. Compos. Mater., 40(7), pp. 605–621. [CrossRef]
Paepegem, W. V. , and Degrieck, J. , 2004, “ Simulating In-Plane Fatigue Damage in Woven Glass Fibre-Reinforced Composites Subject to Fully Reversed Cyclic Loading,” Fatigue Fract. Eng. Mater. Struct., 27(12), pp. 1197–1208. [CrossRef]
Paepegem, W. V. , and Degrieck, J. , 2002, “ A New Coupled Approach of Residual Stiffness and Strength for Fatigue of Fiber-Reinforced Composites,” Int. J. Fatigue, 24(7), pp. 747–762. [CrossRef]
Lee, S. , Churchfield, M. , Moriarty, P. , Jonkman, J. , and Michalakes, J. , 2012, “ Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading,” AIAA Paper No. 2012-0540.
Bazilevs, Y. , Hsu, M.-C. , and Scott, M. , 2012, “ Isogeometric Fluid-Structure Interaction Analysis With Emphasis on Non-Matching Discretizations, and With Application to Wind Turbines,” Comput. Methods Appl. Mech. Eng., 249–252, pp. 28–41. [CrossRef]
Korobenko, A. , Hsu, M.-C. , Akkerman, I. , Tippmann, J. , and Bazilevs, Y. , 2013, “ Structural Mechanics Modeling and FSI Simulation of Wind Turbines,” Math. Models Methods Appl. Sci., 23(2), pp. 249–272. [CrossRef]
Hsu, M.-C. , and Bazilevs, Y. , 2012, “ Fluid-Structure Interaction Modeling of Wind Turbines: Simulating the Full Machine,” Comput. Mech., 50(6), pp. 821–833. [CrossRef]
Bazilevs, Y. , Korobenko, A. , Deng, X. , Yan, J. , Kinzel, M. , and Dabiri, J. , 2014, “ FSI Modeling of Vertical-Axis Wind Turbines,” ASME J. Appl. Mech., 81(8), p. 081006. [CrossRef]
Bazilevs, Y. , Korobenko, A. , Deng, X. , and Yan, J. , 2015, “ Novel Structural Modeling and Mesh Moving Techniques for Advanced Fluid-Structure Interaction Simulation of Wind Turbines,” Int. J. Numer. Methods Eng., 102(3–4), pp. 766–783. [CrossRef]
Hsu, M.-C. , Kamensky, D. , Bazilevs, Y. , Sacks, M. S. , and Hughes, T. J. R. , 2014, “ Fluid-Structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation,” Comput. Mech., 54(4), pp. 1055–1071. [CrossRef]
Bazilevs, Y. , Calo, V. M. , Cottrel, J. A. , Hughes, T. J. R. , Reali, A. , and Scovazzi, G. , 2007, “ Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows,” Comput. Methods Appl. Mech. Eng., 197(1–4), pp. 173–201. [CrossRef]
Hughes, T. J. R. , Liu, W. K. , and Zimmermann, T. K. , 1981, “ Lagrangian–Eulerian Finite Element Formulation for Incompressible Viscous Flows,” Comput. Methods Appl. Mech. Eng., 29(3), pp. 329–349. [CrossRef]
Takizawa, K. , Bazilevs, Y. , and Tezduyar, T. E. , 2012, “ Space–Time and ALE–VMS Techniques for Patient-Specific Cardiovascular Fluid-Structure Interaction Modeling,” Arch. Comput. Methods Eng., 19(2), pp. 171–225. [CrossRef]
Bazilevs, Y. , Hsu, M.-C. , Takizawa, K. , and Tezduyar, T. E. , 2012, “ ALE–VMS and ST–VMS Methods for Computer Modeling of Wind-Turbine Rotor Aerodynamics and Fluid-Structure Interaction,” Math. Models Methods Appl. Sci., 22(Suppl. 2), p. 1230002. [CrossRef]
Korobenko, A. , Hsu, M.-C. , Akkerman, I. , and Bazilevs, Y. , 2013. “ Aerodynamic Simulation of Vertical-Axis Wind Turbines,” ASME J. Appl. Mech., 81(2), p. 021011. [CrossRef]
Bazilevs, Y. , Takizawa, K. , and Tezduyar, T. E. , 2013, “ Challenges and Directions in Computational Fluid-Structure Interaction,” Math. Models Methods Appl. Sci., 23(2), pp. 215–221. [CrossRef]
Takizawa, K. , Bazilevs, Y. , Tezduyar, T. E. , Hsu, M.-C. , Øiseth, O. , Mathisen, K. M. , Kostov, N. , and McIntyre, S. , 2014, “ Engineering Analysis and Design With ALE–VMS and Space–Time Methods,” Arch. Comput. Methods Eng., 21(4), pp. 481–508. [CrossRef]
Takizawa, K. , Bazilevs, Y. , Tezduyar, T. E. , Long, C. C. , Marsden, A. L. , and Schjodt, K. , 2014, “ ST and ALE–VMS Methods for Patient-Specific Cardiovascular Fluid Mechanics Modeling,” Math. Models Methods Appl. Sci., 24(12), pp. 2437–2486. [CrossRef]
Kamensky, D. , Hsu, M.-C. , Schillinger, D. , Evans, J. , Aggarwal, A. , Bazilevs, Y. , Sacks, M. , and Hughes, T. , 2015, “ An Immersogeometric Variational Framework for Fluid-Structure Interaction: Application to Bioprosthetic Heart Valves,” Comput. Methods Appl. Mech. Eng., 284, pp. 1005–1053. [CrossRef]
Bazilevs, Y. , Yan, J. , de Stadler, M. , and Sarkar, S. , 2014, “ Computation of the Flow Over a Sphere at Re = 3700: A Comparison of Uniform and Turbulent Inflow Conditions,” ASME J. Appl. Mech., 81(12), p. 121003. [CrossRef]
Bazilevs, Y. , Korobenko, A. , Yan, J. , Pal, A. , Gohari, S. , and Sarkar, S. , 2015, “ ALE–VMS Formulation for Stratified Turbulent Incompressible Flows With Applications,” Math. Models Methods Appl. Sci., 25(12), pp. 2349–2375. [CrossRef]
Takizawa, K. , Tezduyar, T. E. , and Kolesar, R. , 2015, “ FSI Modeling of the Orion Spacecraft Drogue Parachutes,” Comput. Mech., 55(6), pp. 1167–1179. [CrossRef]
Takizawa, K. , Tezduyar, T. E. , and Buscher, A. , 2015, “ Space–Time Computational Analysis of MAV Flapping-Wing Aerodynamics With Wing Clapping,” Comput. Mech., 55(6), pp. 1131–1141. [CrossRef]
Takizawa, K. , Tezduyar, T. E. , and Kuraishi, T. , 2015, “ Multiscale ST Methods for Thermo-Fluid Analysis of a Ground Vehicle and Its Tires,” Math. Models Methods Appl. Sci., 25(12), pp. 2227–2255. [CrossRef]
Takizawa, K. , Tezduyar, T. , Mochizuki, H. , Hattori, H. , Mei, S. , Pan, L. , and Montel, K. , 2015, “ Space–Time VMS Method for Flow Computations With Slip Interfaces (ST-SI),” Math. Models Methods Appl. Sci., 25(12), pp. 2377–2406. [CrossRef]
Bazilevs, Y. , Takizawa, K. , and Tezduyar, T. E. , 2015, “ New Directions and Challenging Computations in Fluid Dynamics Modeling With Stabilized and Multiscale Methods,” Math. Models Methods Appl. Sci., 25(12), pp. 2217–2226. [CrossRef]
Bazilevs, Y. , Takizawa, K. , Tezduyar, T. , Hsu, M.-C. , Kostov, N. , and McIntyre, S. , 2014, “ Aerodynamic and FSI Analysis of Wind Turbines With the ALE–VMS and ST–VMS Methods,” Arch. Comput. Methods Eng., 21(4), pp. 359–398. [CrossRef]
Takizawa, K. , Tezduyar, T. E. , Boswell, C. , Kolesar, R. , and Montel, K. , 2014, “ FSI Modeling of the Reefed Stages and Disreefing of the Orion Spacecraft Parachutes,” Comput. Mech., 54(5), pp. 1203–1220. [CrossRef]
Takizawa, K. , Tezduyar, T. E. , Kolesar, R. , Boswell, C. , Kanai, T. , and Montel, K. , 2014, “ Multiscale Methods for Gore Curvature Calculations From FSI Modeling of Spacecraft Parachutes,” Comput. Mech., 54(6), pp. 1461–1476. [CrossRef]
Takizawa, K. , Tezduyar, T. E. , and Kostov, N. , 2014, “ Sequentially-Coupled Space–Time FSI Analysis of Bio-Inspired Flapping-Wing Aerodynamics of an MAV,” Comput. Mech., 54(2), pp. 213–233. [CrossRef]
Takizawa, K. , 2014, “ Computational Engineering Analysis With the New-Generation Space–Time Methods,” Comput. Mech., 54(2), pp. 193–211. [CrossRef]
Takizawa, K. , Tezduyar, T. E. , Boben, J. , Kostov, N. , Boswell, C. , and Buscher, A. , 2013, “ Fluid-Structure Interaction Modeling of Clusters of Spacecraft Parachutes With Modified Geometric Porosity,” Comput. Mech., 52(6), pp. 1351–1364. [CrossRef]
Xu, F. , Schillinger, D. , Kamensky, D. , Varduhn, V. , Wang, C. , and Hsu, M.-C. , “ The Tetrahedral Finite Cell Method for Fluids: Immersogeometric Analysis of Turbulent Flow Around Complex Geometries,” Comput. Fluids (in press).
Kiendl, J. , Bletzinger, K.-U. , Linhard, J. , and Wüchner, R. , 2009, “ Isogeometric Shell Analysis With Kirchhoff–Love Elements,” Comput. Methods Appl. Mech. Eng., 198(49–52), pp. 3902–3914. [CrossRef]
Kiendl, J. , Bazilevs, Y. , Hsu, M.-C. , Wüchner, R. , and Bletzinger, K.-U. , 2010, “ The Bending Strip Method for Isogeometric Analysis of Kirchhoff–Love Shell Structures Comprised of Multiple Patches,” Comput. Methods Appl. Mech. Eng., 199(37–40), pp. 2403–2416. [CrossRef]
Benson, D. J. , Bazilevs, Y. , Hsu, M.-C. , and Hughes, T. J. R. , 2011, “ A Large Deformation, Rotation-Free, Isogeometric Shell,” Comput. Methods Appl. Mech. Eng., 200(13–16), pp. 1367–1378. [CrossRef]
Echter, R. , Oesterle, B. , and Bischoff, M. , 2013, “ A Hierarchic Family of Isogeometric Shell Finite Elements,” Comput. Methods Appl. Mech. Eng., 254, pp. 170–180. [CrossRef]
Hughes, T. J. R. , Cottrell, J. A. , and Bazilevs, Y. , 2005, “ Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement,” Comput. Methods Appl. Mech. Eng., 194(39–41), pp. 4135–4195. [CrossRef]
Cottrell, J. A. , Hughes, T. J. R. , and Bazilevs, Y. , 2009, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, UK.
Raknes, S. , Deng, X. , Bazilevs, Y. , Benson, D. , Mathisen, K. , and Kvamsdal, T. , 2013, “ Isogeometric Rotation-Free Bending-Stabilized Cables: Statics, Dynamics, Bending Strips and Coupling With Shells,” Comput. Methods Appl. Mech. Eng., 263, pp. 127–143. [CrossRef]
Schillinger, D. , Borden, M. , and Stolarski, H. , 2015, “ Isogeometric Collocation for Phase-Field Fracture Models,” Comput. Methods Appl. Mech. Eng., 284, pp. 583–610. [CrossRef]
Borden, M. , Hughes, T. , Landis, C. , and Verhoosel, C. , 2014, “ A Higher-Order Phase-Field Model for Brittle Fracture: Formulation and Analysis Within the Isogeometric Analysis Framework,” Comput. Methods Appl. Mech. Eng., 273, pp. 100–118. [CrossRef]
Hsu, M.-C. , Wang, C. , Herrema, A. , Schillinger, D. , Ghoshal, A. , and Bazilevs, Y. , 2015, “ An Interactive Geometry Modeling and Parametric Design Platform for Isogeometric Analysis,” Comput. Math. Appl., 70(7), pp. 1481–1500. [CrossRef]
Kiendl, J. , Hsu, M.-C. , Wu, M. , and Reali, A. , 2015, “ Isogeometric Kirchhoff–Love Shell Formulations for General Hyperelastic Materials,” Comput. Methods Appl. Mech. Eng., 291, pp. 280–303. [CrossRef]
Hosseini, S. , Remmers, J. , Verhoosel, C. , and de Borst, R. , 2015, “ Propagation of Delamination in Composite Materials With Isogeometric Continuum Shell Elements,” Int. J. Numer. Methods Eng., 102(3–4), pp. 159–179. [CrossRef]
Guo, Y. , and Ruess, M. , 2015, “ A Layerwise Isogeometric Approach for NURBS-Derived Laminate Composite Shells,” Compos. Struct., 124, pp. 300–309. [CrossRef]
Valizadeh, N. , Bazilevs, Y. , Chen, J. , and Rabczuk, T. , 2015, “ A Coupled IGA–Meshfree Discretization of Arbitrary Order of Accuracy and Without Global Geometry Parameterization,” Comput. Methods Appl. Mech. Eng., 293, pp. 20–37. [CrossRef]
Hillman, M. , Chen, J. , and Bazilevs, Y. , 2015, “ Variationally Consistent Domain Integration for Isogeometric Analysis,” Comput. Methods Appl. Mech. Eng., 284, pp. 521–540. [CrossRef]
van Opstal, T. , Fonn, E. , Holdahl, R. , Kvamsdal, T. , Kvarving, A. , Mathisen, K. , Nordanger, K. , Okstad, K. , Rasheed, A. , and Tabib, M. , 2015, “ Isogeometric Methods for CFD and FSI-Simulation of Flow Around Turbine Blades,” Energy Procedia, 80, pp. 442–449. [CrossRef]
Veiga, L. B. D. , Hughes, T. , Kiendl, J. , Lovadina, C. , Niiranen, J. , Reali, A. , and Speleers, H. , 2015, “ A Locking-Free Model for Reissnermindlin Plates: Analysis and Isogeometric Implementation Via NURBS and Triangular NURPS,” Math. Models Methods Appl. Sci., 25(8), pp. 1519–1551. [CrossRef]
Anitescu, C. , Zhang, Y. Y. J. , and Rabczuk, T. , 2015, “ An Isogeometric Collocation Method Using Superconvergent Points,” Comput. Methods Appl. Mech. Eng., 284, pp. 1073–1097. [CrossRef]
Zayas, J. , and Johnson, W. , 2008, “ 3X-100 Blade Field Test,” Wind Energy Technology Department, Sandia National Laboratories, Albuquerque, NM, Report No. SAND2007-5138.
Berry, D. , and Ashwill, T. , 2007, “ Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2007-0201.
Bazilevs, Y. , and Hughes, T. J. R. , 2007, “ Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics,” Comput. Fluids, 36(1), pp. 12–26. [CrossRef]
Bazilevs, Y. , Michler, C. , Calo, V. M. , and Hughes, T. J. R. , 2007, “ Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 196(49–52), pp. 4853–4862. [CrossRef]
Bazilevs, Y. , Michler, C. , Calo, V. M. , and Hughes, T. J. R. , 2010, “ Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows With Weakly Enforced Boundary Conditions on Unstretched Meshes,” Comput. Methods Appl. Mech. Eng., 199(13–16), pp. 780–790. [CrossRef]
Bazilevs, Y. , and Akkerman, I. , 2010, “ Large Eddy Simulation of Turbulent Taylor–Couette Flow Using Isogeometric Analysis and the Residual–Based Variational Multiscale Method,” J. Comput. Phys., 229(9), pp. 3402–3414. [CrossRef]
Hsu, M.-C. , Akkerman, I. , and Bazilevs, Y. , 2012, “ Wind Turbine Aerodynamics Using ALE–VMS: Validation and Role of Weakly Enforced Boundary Conditions,” Comput. Mech., 50(4), pp. 499–511. [CrossRef]
Akkerman, I. , Bazilevs, Y. , Kees, C. E. , and Farthing, M. W. , 2011, “ Isogeometric Analysis of Free-Surface Flow,” J. Comput. Phys., 230(11), pp. 4137–4152. [CrossRef]
Kees, C. E. , Akkerman, I. , Farthing, M. W. , and Bazilevs, Y. , 2011, “ A Conservative Level Set Method Suitable for Variable-Order Approximations and Unstructured Meshes,” J. Comput. Phys., 230(12), pp. 4536–4558. [CrossRef]
Akkerman, I. , Bazilevs, Y. , Benson, D. J. , Farthing, M. W. , and Kees, C. E. , 2012, “ Free-Surface Flow and Fluid–Object Interaction Modeling With Emphasis on Ship Hydrodynamics,” ASME J. Appl. Mech., 79(1), p. 010905. [CrossRef]
Akkerman, I. , Dunaway, J. , Kvandal, J. , Spinks, J. , and Bazilevs, Y. , 2012, “ Toward Free-Surface Modeling of Planing Vessels: Simulation of the Fridsma Hull Using ALE–VMS,” Comput. Mech., 50(6), pp. 719–727. [CrossRef]
Hsu, M.-C. , Akkerman, I. , and Bazilevs, Y. , 2014, “ Finite Element Simulation of Wind Turbine Aerodynamics: Validation Study Using NREL Phase VI Experiment,” Wind Energy, 17(3), pp. 461–481. [CrossRef]
Augier, B. , Yan, J. , Korobenko, A. , Czarnowski, J. , Ketterman, G. , and Bazilevs, Y. , 2015, “ Experimental and Numerical FSI Study of Compliant Hydrofoils,” Comput. Mech., 55(6), pp. 1079–1090. [CrossRef]
Yan, J. , Augier, B. , Korobenko, A. , Czarnowski, J. , Ketterman, G. , and Bazilevs, Y. , “ FSI Modeling of a Propulsion System Based on Compliant Hydrofoils in a Tandem Configuration,” Comput. Fluids (in press).
Bazilevs, Y. , and Hughes, T. J. R. , 2008, “ NURBS-Based Isogeometric Analysis for the Computation of Flows About Rotating Components,” Comput. Mech., 43(1), pp. 143–150. [CrossRef]
Benson, D. J. , Hartmann, S. , Bazilevs, Y. , Hsu, M.-C. , and Hughes, T. , 2013, “ Blended Isogeometric Shells,” Comput. Methods Appl. Mech. Eng., 255, pp. 133–146. [CrossRef]
Reddy, J. N. , 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, Boca Raton, FL.
Daniel, I . M. , and Ishai, O. , 2006, Engineering Mechanics of Composite Materials, Oxford University Press, New York.
Farinholt, K. , Taylor, S. , Park, G. , and Ammerman, C. , 2012, “ Full-Scale Fatigue Tests of CX-100 Wind Turbine Blades. Part I: Testing,” Proc. SPIE, 8343, p. 83430P.
Taylor, S. , Jeong, H. , Jang, J. , Park, G. , Farinholt, K. , Todd, M. , and Ammerman, C. , 2012, “ Full-Scale Fatigue Tests of CX-100 Wind Turbine Blades. Part II: Analysis,” Proc. SPIE, 8343, p. 83430Q.
Tezduyar, T. E. , 2001, “ Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces,” Arch. Comput. Methods Eng., 8(2), pp. 83–130. [CrossRef]
Tezduyar, T. E. , Sathe, S. , Keedy, R. , and Stein, K. , 2006, “ Space–Time Finite Element Techniques for Computation of Fluid-Structure Interactions,” Comput. Methods Appl. Mech. Eng., 195(17–18), pp. 2002–2027. [CrossRef]
Tezduyar, T. E. , Sathe, S. , and Stein, K. , 2006, “ Solution Techniques for the Fully-Discretized Equations in Computation of Fluid-Structure Interactions With the Space–Time Formulations,” Comput. Methods Appl. Mech. Eng., 195(41–43), pp. 5743–5753. [CrossRef]
Tezduyar, T. E. , and Sathe, S. , 2007, “ Modeling of Fluid-Structure Interactions With the Space–Time Finite Elements: Solution Techniques,” Int. J. Numer. Methods Fluids, 54(6–8), pp. 855–900. [CrossRef]
Bazilevs, Y. , Takizawa, K. , and Tezduyar, T. E. , 2013, Computational Fluid-Structure Interaction: Methods and Applications, Wiley, Hoboken, NJ.
Chung, J. , and Hulbert, G. M. , 1993, “ A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method,” ASME J. Appl. Mech., 60(2), pp. 371–75. [CrossRef]
Jansen, K. E. , Whiting, C. H. , and Hulbert, G. M. , 2000, “ A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method,” Comput. Methods Appl. Mech. Eng., 190(3–4), pp. 305–319. [CrossRef]
Bazilevs, Y. , Calo, V. M. , Hughes, T. J. R. , and Zhang, Y. , 2008, “ Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations,” Comput. Mech., 43(1), pp. 3–37. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Axial chord-length and twist-angle distribution for the CX-100 blade. The airfoil profiles used along the blade axis are also indicated.

Grahic Jump Location
Fig. 2

NURBS mesh of the CX-100 blade cut at a 4 m station to show the position of the shear web together and airfoil profile at this section. Laminate stacking at the leading edge, trailing edge, spar cap, and shear web zones is also shown.

Grahic Jump Location
Fig. 3

Cycle count versus date for the fatigue test of the CX-100 blade. Triangular points indicate the calibration stations at which the simulation results for damage growth and acceleration history were compared to fatigue test data. The use of the DDDAS concept enabled accurate prediction of blade-damage growth and final failure.

Grahic Jump Location
Fig. 4

Decomposition of the rotor motion into three 120 deg segments. Simulation of the full machine with three blades for only 1/3 of the revolution is equivalent to simulating asingle blade for a full revolution, from the standpoint of obtaining a full blade-stress time history for driving the fatigue-damage model.

Grahic Jump Location
Fig. 5

Time history of the blade-tip deflection at 100,000, 10,000,000, and 100,000,000 cycles

Grahic Jump Location
Fig. 6

Isocontours of air speed (in m/s) on a plane cut after 100,000 (left) and 150,000,000 (right) cycles. The right graphic corresponds to the cycle right before the blade failure. Largebending deformation is due to significant loss of blade stiffness.

Grahic Jump Location
Fig. 7

Damage index D1 in the DBM-1708 layer near the blade aerodynamic zone after 10,000,000, 40,000,000, 100,000,000, and 150,000,000 cycles (left to right and top to bottom)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In