0
Research Papers

Bio-Inspired Fast Actuation by Mechanical Instability of Thermoresponding Hydrogel Structures

[+] Author and Article Information
Xuxu Yang

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: xxyang@zju.edu.cn

Guorui Li

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: Guoruili@zju.edu.cn

Tingyu Cheng

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: T2cheng@ucsd.edu

Qian Zhao

Department of Chemical and
Biological Engineering,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: qianzhao@zju.edu.cn

Chunxin Ma

Department of Chemical and
Biological Engineering,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: chunxinma@zju.edu.cn

Tao Xie

Department of Chemical and
Biological Engineering,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: taoxie@zju.edu.cn

Tiefeng Li

Department of Engineering Mechanics,
Soft Matter Research Center (SMRC),
Key Laboratory of Soft Machines and Smart
Devices of Zhejiang Province,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: litiefeng@zju.edu.cn

Wei Yang

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: yangw@zju.edu.cn

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received February 25, 2016; final manuscript received March 9, 2016; published online May 5, 2016. Editor: Yonggang Huang.

J. Appl. Mech 83(7), 071005 (May 05, 2016) (7 pages) Paper No: JAM-16-1108; doi: 10.1115/1.4032983 History: Received February 25, 2016; Revised March 09, 2016

Inspired by natural plants, thermoresponding hydrogel (TRH) structures have been designed to trigger mechanical instability with fast actuation. Tough Ca-alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been synthesized by the hybrid of physically cross-linked alginate and covalently cross-linked PNIPAM. The tough Ca-alginate/PNIPAM hydrogel exhibits 30 kPa of elastic modulus, 280 J/m2 of fracture energies, and fivefold of uniaxial stretch. A multilayered structure made of (Ca-alginate/PNIPAM)/(Ca-alginate/poly (acrylamide)) hydrogels demonstrate fast actuation induced by mechanical instability. A finite-element simulation model is developed to investigate the deformation and to guide the structural design of the hydrogels. The instability-triggering mechanism can enhance the actuation performances of hydrogel structures in applications, such as drug delivery, microfluid control system, and soft biomimetic robotics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kempaiah, R. , and Nie, Z. , 2014, “ From Nature to Synthetic Systems: Shape Transformation in Soft Materials,” J. Mater. Chem. B, 2(17), pp. 2357–2368. [CrossRef]
Ionov, L. , 2013, “ Biomimetic Hydrogel-Based Actuating Systems,” Adv. Funct. Mater., 23(36), pp. 4555–4570. [CrossRef]
Stuart, M. A. , Huck, W. T. , Genzer, J. , Muller, M. , Ober, C. , Stamm, M. , Sukhorukov, G. B. , Szleifer, I. , Tsukruk, V. V. , Urban, M. , Winnik, F. , Zauscher, S. , Luzinov, I. , and Minko, S. , 2010, “ Emerging Applications of Stimuli-Responsive Polymer Materials,” Nat. Mater., 9(2), pp. 101–113. [CrossRef] [PubMed]
Zhuang, J. , Gordon, M. R. , Ventura, J. , Li, L. , and Thayumanavan, S. , 2013, “ Multi-Stimuli Responsive Macromolecules and Their Assemblies,” Chem. Soc. Rev., 42(17), pp. 7421–7435. [CrossRef] [PubMed]
Zhao, X. , Kim, J. , Cezar, C. A. , Huebsch, N. , Lee, K. , Bouhadir, K. , and Mooney, D. J. , 2011, “ Active Scaffolds for On-Demand Drug and Cell Delivery,” Proc. Natl. Acad. Sci. U.S.A., 108(1), pp. 67–72. [CrossRef] [PubMed]
Beebe, D. J. , Moore, J. S. , Bauer, J. M. , Yu, Q. , Liu, R. H. , Devadoss, C. , and Jo, B. H. , 2000, “ Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic Channels,” Nature, 404(6778), pp. 588–590. [CrossRef] [PubMed]
Tay, C. Y. , Wu, Y.-L. , Cai, P. , Tan, N. S. , Venkatraman, S. S. , Chen, X. , and Tan, L. P. , 2015, “ Bio-Inspired Micropatterned Hydrogel to Direct and Deconstruct Hierarchical Processing of Geometry-Force Signals by Human Mesenchymal Stem Cells During Smooth Muscle Cell Differentiation,” NPG Asia Mater., 7(7), p. 199. [CrossRef]
Vunjak-Novakovic, G. , and Scadden, D. T. , 2011, “ Biomimetic Platforms for Human Stem Cell Research,” Cell Stem Cell, 8(3), pp. 252–261. [CrossRef] [PubMed]
Ilievski, F. , Mazzeo, A. D. , Shepherd, R. F. , Chen, X. , and Whitesides, G. M. , 2011, “ Soft Robotics for Chemists,” Angew. Chem., 50(8), pp. 1890–1895. [CrossRef]
Morales, D. , Palleau, E. , Dickey, M. D. , and Velev, O. D. , 2014, “ Electro-Actuated Hydrogel Walkers With Dual Responsive Legs,” Soft Matter, 10(9), pp. 1337–1348. [CrossRef] [PubMed]
Maeda, S. , Hara, Y. , Sakai, T. , Yoshida, R. , and Hashimoto, S. , 2007, “ Self-Walking Gel,” Adv. Mater., 19(21), pp. 3480–3484. [CrossRef]
Cai, S. , and Suo, Z. , 2011, “ Mechanics and Chemical Thermodynamics of Phase Transition in Temperature-Sensitive Hydrogels,” J. Mech. Phys. Solids, 59(11), pp. 2259–2278. [CrossRef]
Hong, W. , Zhao, X. , Zhou, J. , and Suo, Z. , 2008, “ A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels,” J. Mech. Phys. Solids, 56(5), pp. 1779–1793. [CrossRef]
Hong, W. , Liu, Z. , and Suo, Z. , 2009, “ Inhomogeneous Swelling of a Gel in Equilibrium With a Solvent and Mechanical Load,” Int. J. Solids Struct., 46(17), pp. 3282–3289. [CrossRef]
Takashima, Y. , Hatanaka, S. , Otsubo, M. , Nakahata, M. , Kakuta, T. , Hashidzume, A. , Yamaguchi, H. , and Harada, A. , 2012, “ Expansion-Contraction of Photoresponsive Artificial Muscle Regulated by Host-Guest Interactions,” Nat. Commun., 3, p. 1270. [CrossRef] [PubMed]
McKee, J. R. , Hietala, S. , Seitsonen, J. , Laine, J. , Kontturi, E. , and Ikkala, O. , 2014, “ Thermoresponsive Nanocellulose Hydrogels With Tunable Mechanical Properties,” ACS Macro Lett., 3(3), pp. 266–270. [CrossRef]
Xia, L. W. , Xie, R. , Ju, X. J. , Wang, W. , Chen, Q. , and Chu, L. Y. , 2013, “ Nano-Structured Smart Hydrogels With Rapid Response and High Elasticity,” Nat. Commun., 4, p. 2226. [PubMed]
Tanaka, T. , Fillmore, D. , Sun, S.-T. , Nishio, I. , Swislow, G. , and Shah, A. , 1980, “ Phase Transitions in Ionic Gels,” Phys. Rev. Lett., 45(20), pp. 1636–1639. [CrossRef]
Suzuki, A. , and Tanaka, T. , 1990, “ Phase-Transition in Polymer Gels Induced by Visible-Light,” Nature, 346(6282), pp. 345–347. [CrossRef]
Bhattacharya, S. , Eckert, F. , Boyko, V. , and Pich, A. , 2007, “ Temperature-, pH-, and Magnetic-Field-Sensitive Hybrid Microgels,” Small, 3(4), pp. 650–657. [CrossRef] [PubMed]
King, D. R. , Sun, T. L. , Huang, Y. , Kurokawa, T. , Nonoyama, T. , Crosby, A. J. , and Gong, J. P. , 2015, “ Extremely Tough Composites From Fabric Reinforced Polyampholyte Hydrogels,” Mater. Horiz., 2(6), pp. 584–591. [CrossRef]
Ghoorchian, A. , Simon, J. R. , Bharti, B. , Han, W. , Zhao, X. , Chilkoti, A. , and López, G. P. , 2015, “ Bioinspired Reversibly Cross-Linked Hydrogels Comprising Polypeptide Micelles Exhibit Enhanced Mechanical Properties,” Adv. Funct. Mater., 25(21), pp. 3122–3130. [CrossRef]
Luo, F. , Sun, T. L. , Nakajima, T. , Kurokawa, T. , Ihsan, A. B. , Li, X. , Guo, H. , and Gong, J. P. , 2015, “ Free Reprocessability of Tough and Self-Healing Hydrogels Based on Polyion Complex,” ACS Macro Lett., 4(9), pp. 961–964. [CrossRef]
Luo, F. , Sun, T. L. , Nakajima, T. , Kurokawa, T. , Zhao, Y. , Ihsan, A. B. , Guo, H. L. , Li, X. F. , and Gong, J. P. , 2014, “ Crack Blunting and Advancing Behaviors of Tough and Self-Healing Polyampholyte Hydrogel,” Macromolecules, 47(17), pp. 6037–6046. [CrossRef]
Liu, M. , Ishida, Y. , Ebina, Y. , Sasaki, T. , Hikima, T. , Takata, M. , and Aida, T. , 2015, “ An Anisotropic Hydrogel With Electrostatic Repulsion Between Cofacially Aligned Nanosheets,” Nature, 517(7532), pp. 68–72. [CrossRef] [PubMed]
Kim, Y. S. , Liu, M. , Ishida, Y. , Ebina, Y. , Osada, M. , Sasaki, T. , Hikima, T. , Takata, M. , and Aida, T. , 2015, “ Thermoresponsive Actuation Enabled By Permittivity Switching in an Electrostatically Anisotropic Hydrogel,” Nat. Mater., 14(10), pp. 1002–1007. [CrossRef] [PubMed]
Sun, J. Y. , Zhao, X. , Illeperuma, W. R. , Chaudhuri, O. , Oh, K. H. , Mooney, D. J. , Vlassak, J. J. , and Suo, Z. , 2012, “ Highly Stretchable and Tough Hydrogels,” Nature, 489(7414), p. 133136. [CrossRef]
Gong, J. P. , 2010, “ Why Are Double Network Hydrogels so Tough?” Soft Matter, 6(12), pp. 2583–2590. [CrossRef]
Yang, C. H. , Wang, M. X. , Haider, H. , Yang, J. H. , Sun, J. , Chen, Y. M. , Zhou, J. X. , and Suo, Z. G. , 2013, “ Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations,” ACS Appl. Mater. Interfaces, 5(21), pp. 10418–10422. [CrossRef] [PubMed]
Darnell, M. C. , Sun, J. Y. , Mehta, M. , Johnson, C. , Arany, P. R. , Suo, Z. , and Mooney, D. J. , 2013, “ Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels,” Biomaterials, 34(33), pp. 8042–8048. [CrossRef] [PubMed]
Tanaka, Y. , Kuwabara, R. , Na, Y. H. , Kurokawa, T. , Gong, J. P. , and Osada, Y. , 2005, “ Determination of Fracture Energy of High Strength Double Network Hydrogels,” J. Phys. Chem. B, 109(23), pp. 11559–11562. [CrossRef] [PubMed]
Zheng, W. J. , An, N. , Yang, J. H. , Zhou, J. , and Chen, Y. M. , 2015, “ Tough Al-Alginate/Poly(N-Isopropylacrylamide) Hydrogel With Tunable LCST for Soft Robotics,” ACS Appl. Mater. Interfaces, 7(3), pp. 1758–1764. [CrossRef] [PubMed]
Ma, C. , Li, T. , Zhao, Q. , Yang, X. , Wu, J. , Luo, Y. , and Xie, T. , 2014, “ Supramolecular Lego Assembly Towards Three-Dimensional Multi-Responsive Hydrogels,” Adv. Mater., 26(32), pp. 5665–5669. [CrossRef] [PubMed]
Sun, T. , Wu, Z. , and Gong, J. , 2012, “ Self-Assembled Structures of a Semi-Rigid Polyanion in Aqueous Solutions and Hydrogels,” Sci. China Chem., 55(5), pp. 735–742. [CrossRef]
Hong, S. , Sycks, D. , Chan, H. F. , Lin, S. , Lopez, G. P. , Guilak, F. , Leong, K. W. , and Zhao, X. , 2015, “ 3D Printing of Highly Stretchable and Tough Hydrogels Into Complex, Cellularized Structures,” Adv. Mater., 27(27), pp. 4035–4040. [CrossRef] [PubMed]
Wu, Z. L. , Moshe, M. , Greener, J. , Therien-Aubin, H. , Nie, Z. , Sharon, E. , and Kumacheva, E. , 2013, “ Three-Dimensional Shape Transformations of Hydrogel Sheets Induced by Small-Scale Modulation of Internal Stresses,” Nat. Commun., 4, p. 1586. [CrossRef] [PubMed]
Wu, Z. L. , Kurokawa, T. , Liang, S. , Furukawa, H. , and Gong, J. P. , 2010, “ Hydrogels With Cylindrically Symmetric Structure at Macroscopic Scale by Self-Assembly of Semi-Rigid Polyion Complex,” J. Am. Chem. Soc., 132(29), pp. 10064–10069. [CrossRef] [PubMed]
Keplinger, C. , Sun, J. Y. , Foo, C. C. , Rothemund, P. , Whitesides, G. M. , and Suo, Z. G. , 2013, “ Stretchable, Transparent, Ionic Conductors,” Science, 341(6149), pp. 984–987. [CrossRef] [PubMed]
Hodick, D. , and Sievers, A. , 1989, “ On the Mechanism of Trap Closure of Venus Flytrap (Dionaea-Muscipula Ellis),” Planta, 179(1), pp. 32–42. [CrossRef] [PubMed]
Forterre, Y. , Skotheim, J. M. , Dumais, J. , and Mahadevan, L. , 2005, “ How the Venus Flytrap Snaps,” Nature, 433(7024), pp. 421–425. [CrossRef] [PubMed]
Borno, R. T. , Steinmeyer, J. D. , and Maharbiz, M. M. , 2006, “ Transpiration Actuation: The Design, Fabrication and Characterization of Biomimetic Microactuators Driven by the Surface Tension of Water,” J. Micromech. Microeng., 16(11), pp. 2375–2383. [CrossRef]
Vincent, O. , Weisskopf, C. , Poppinga, S. , Masselter, T. , Speck, T. , Joyeux, M. , Quilliet, C. , and Marmottant, P. , 2011, “ Ultra-Fast Underwater Suction Traps,” Proc. Biol. Sci./R. Soc., 278(1720), pp. 2909–2914. [CrossRef]
Holmes, D. P. , and Crosby, A. J. , 2007, “ Snapping Surfaces,” Adv. Mater., 19(21), pp. 3589–3593. [CrossRef]
Epstein, E. , Yoon, J. , Madhukar, A. , Hsia, K. J. , and Braun, P. V. , 2015, “ Colloidal Particles That Rapidly Change Shape Via Elastic Instabilities,” Small, 11(45), pp. 6051–6057. [CrossRef] [PubMed]
Xia, C. , Lee, H. , and Fang, N. , 2010, “ Solvent-Driven Polymeric Micro Beam Device,” J. Micromech. Microeng., 20(8), p. 085030. [CrossRef]
Lee, H. , Xia, C. G. , and Fang, N. X. , 2010, “ First Jump of Microgel; Actuation Speed Enhancement by Elastic Instability,” Soft Matter, 6(18), pp. 4342–4345. [CrossRef]
Zhang, X. X. , Zeng, K. Y. , Li, J. , and Zhang, Y. W. , 2009, “ Instability Pathways of Hydrogel Microlenses Under Concentrated Loadings,” J. Appl. Phys., 106(2), p. 023536. [CrossRef]
Shi, J. , Robitaille, M. , Muftu, S. , and Wan, K. T. , 2011, “ Deformation of a Convex Hydrogel Shell by Parallel Plate and Central Compression,” Exp. Mech., 52(5), pp. 539–549. [CrossRef]
Li, T. , Keplinger, C. , Baumgartner, R. , Bauer, S. , Yang, W. , and Suo, Z. , 2013, “ Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability,” J. Mech. Phys. Solids, 61(2), pp. 611–628. [CrossRef]
Li, T. , Zou, Z. , Mao, G. , and Qu, S. , 2013, “ Electromechanical Bistable Behavior of a Novel Dielectric Elastomer Actuator,” ASME J. Appl. Mech., 81(4), p. 041019. [CrossRef]
Carrell, J. , Tate, D. , Wang, S. , and Zhang, H.-C. , 2011, “ Shape Memory Polymer Snap-Fits for Active Disassembly,” J. Cleaner Prod., 19(17–18), pp. 2066–2074. [CrossRef]
Jeon, J.-H. , Cheng, T.-H. , and Oh, I.-K. , 2010, “ Snap-Through Dynamics of Buckled IPMC Actuator,” Sens. Actuators, A, 158(2), pp. 300–305. [CrossRef]
Rivlin, R. S. , and Thomas, A. G. , 1953, “ Rupture of Rubber—1: Characteristic Energy for Tearing,” J. Polym. Sci., 10(3), pp. 291–318. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Uniaxial tensile tests of the TRH. (a) The hydrogel in its reference state. (b) The hydrogel is stretched five times of its initial length. (c) The hydrogel in its reference state with a cut of 3 cm. (d) The 3 cm cut remains stable when the hydrogel is stretched three times of its initial length. (e) The stretch–stress relation of the hydrogel sample with and without cut. (f) The deformation–temperature–time relationship of the hydrogel.

Grahic Jump Location
Fig. 2

Snap-through hydrogel structure design and synthesis: (a) deformation of a thin plate under circumferential stress, (b) synthesis of a snap-through hydrogel structure, and (c) deformed snap-through hydrogel structure after the release of the prestretched NRH

Grahic Jump Location
Fig. 3

(a)–(i) Actuation motion of snap-through hydrogel structure and (j) analysis of snap-through motion

Grahic Jump Location
Fig. 4

FEM simulation analysis: (a) mesh and boundary condition in simulation, (b) distribution of stress in FEM simulation results, and (c) distribution of displacement in FEM simulation results

Grahic Jump Location
Fig. 5

Experimental determination of fracture energy. (a) The sample without cut is used to measure the force–length curve. The area beneath the force–length curve gives the work done by the force to the sample, Uc). (b) The sample with a cut is used to measure the critical distance between the clamps, Lc, when the cut turns into a running crack.

Grahic Jump Location
Fig. 6

(a) Schematics of a bilayer hydrogel beam and (b) schematics of an axisymmetric buckling shell

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In