0
Research Papers

Mechanics of Cell Mechanosensing on Patterned Substrate

[+] Author and Article Information
Chenglin Liu, Shijie He, Xiaojun Li

Biomechanics and Biomaterials Laboratory,
School of Aerospace Engineering,
Beijing Institute of Technology,
Beijing 100081, China

Bo Huo

Biomechanics and Biomaterials Laboratory,
School of Aerospace Engineering,
Beijing Institute of Technology,
No. 5 South Zhongguancun Street,
Beijing 100081, China
e-mail: huobo@bit.edu.cn

Baohua Ji

Biomechanics and Biomaterials Laboratory,
School of Aerospace Engineering,
Beijing Institute of Technology,
No. 5 South Zhongguancun Street,
Beijing 100081, China
e-mail: bhji@bit.edu.cn

1Corresponding authors.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received January 26, 2016; final manuscript received March 3, 2016; published online March 21, 2016. Editor: Yonggang Huang.

J. Appl. Mech 83(5), 051014 (Mar 21, 2016) (8 pages) Paper No: JAM-16-1052; doi: 10.1115/1.4032907 History: Received January 26, 2016; Revised March 03, 2016

It has been recognized that cells are able to actively sense and respond to the mechanical signals through an orchestration of many subcellular processes, such as cytoskeleton remodeling, nucleus reorientation, and polarization. However, the underlying mechanisms that regulate these behaviors are largely elusive; in particular, the quantitative understanding of these mechanical responses is lacking. In this study, combining experimental measurement and theoretical modeling, we studied the effects of rigidity and pattern geometry of substrate on collective cell behaviors. We showed that the mechanical force took pivotal roles in regulating the alignment and polarization of cells and subcellular structures. The cell, cytoskeleton, and nucleus preferred to align and polarize along the direction of maximum principal stress in cell monolayer, and the driving force is the in-plane maximum shear stress. The higher the maximum shear stress, the more the cells and their subcellular structures preferred to align and polarize along the direction of maximum principal stress. In addition, we proved that in response to the change of in-plane shear stresses, the actin cytoskeleton is more sensitive than the nucleus. This work provides important insights into the mechanisms of cellular and subcellular responses to mechanical signals. And it also suggests that the mechanical force does matter in cell behaviors, and quantitative studies through mechanical modeling are indispensable in biomedical and tissue engineering applications.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Thery, M. , Pepin, A. , Dressaire, E. , Chen, Y. , and Bornens, M. , 2006, “ Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment,” Cell Motil. Cytoskeleton, 63(6), pp. 341–355. [CrossRef] [PubMed]
Rape, A. D. , Guo, W. H. , and Wang, Y. L. , 2011, “ The Regulation of Traction Force in Relation to Cell Shape and Focal Adhesions,” Biomaterials, 32(8), pp. 2043–2051. [CrossRef] [PubMed]
Chen, C. S. , Mrksich, M. , Huang, S. , Whitesides, G. M. , and Ingber, D. E. , 1997, “ Geometric Control of Cell Life and Death,” Science, 276(5317), pp. 1425–1428. [CrossRef] [PubMed]
Fu, R. , Liu, Q. , Song, G. , Baik, A. , Hu, M. , Sun, S. , Guo, X. E. , Long, M. , and Huo, B. , 2013, “ Spreading Area and Shape Regulate Apoptosis and Differentiation of Osteoblasts,” Biomed. Mater., 8(5), p. 055005. [CrossRef] [PubMed]
Elineni, K. K. , and Gallant, N. D. , 2011, “ Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution,” Biophys. J., 101(12), pp. 2903–2911. [CrossRef] [PubMed]
Kilian, K. A. , Bugarija, B. , Lahn, B. T. , and Mrksich, M. , 2010, “ Geometric Cues for Directing the Differentiation of Mesenchymal Stem Cells,” Proc. Natl. Acad. Sci. U.S.A., 107(11), pp. 4872–4877. [CrossRef] [PubMed]
McBeath, R. , Pirone, D. M. , Nelson, C. M. , Bhadriraju, K. , and Chen, C. S. , 2004, “ Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment,” Dev. Cell, 6(4), pp. 483–495. [CrossRef] [PubMed]
Tee, S. Y. , Fu, J. , Chen, C. S. , and Janmey, P. A. , 2011, “ Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness,” Biophys. J., 100(5), pp. L25–27. [CrossRef] [PubMed]
Chen, B. , Kumar, G. , Co, C. C. , and Ho, C. C. , 2013, “ Geometric Control of Cell Migration,” Sci. Rep., 3, p. 2827. [PubMed]
Wan, L. Q. , Kang, S. M. , Eng, G. , Grayson, W. L. , Lu, X. L. , Huo, B. , Gimble, J. , Guo, X. E. , Mow, V. C. , and Vunjak-Novakovic, G. , 2010, “ Geometric Control of Human Stem Cell Morphology and Differentiation,” Integr. Biol.-UK, 2(7–8), pp. 346–353. [CrossRef]
Wan, L. Q. , Ronaldson, K. , Park, M. , Taylor, G. , Zhang, Y. , Gimble, J. M. , and Vunjak-Novakovic, G. , 2011, “ Micropatterned Mammalian Cells Exhibit Phenotype-Specific Left-Right Asymmetry,” Proc. Natl. Acad. Sci. U.S.A., 108(30), pp. 12295–12300. [CrossRef] [PubMed]
Luo, W. , Jones, S. R. , and Yousaf, M. N. , 2008, “ Geometric Control of Stem Cell Differentiation Rate on Surfaces,” Langmuir, 24(21), pp. 12129–12133. [CrossRef] [PubMed]
Ruiz, S. A. , and Chen, C. S. , 2008, “ Emergence of Patterned Stem Cell Differentiation Within Multicellular Structures,” Stem Cells, 26(11), pp. 2921–2927. [CrossRef] [PubMed]
Ghibaudo, M. , Saez, A. , Trichet, L. , Xayaphoummine, A. , Browaeys, J. , Silberzan, P. , Buguin, A. , and Ladoux, B. , 2008, “ Traction Forces and Rigidity Sensing Regulate Cell Functions,” Soft Matter, 4(9), pp. 1836–1843. [CrossRef]
Saez, A. , Buguin, A. , Silberzan, P. , and Ladoux, B. , 2005, “ Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?,” Biophys. J., 89(6), pp. L52–L54. [CrossRef] [PubMed]
Weng, S. , and Fu, J. , 2011, “ Synergistic Regulation of Cell Function by Matrix Rigidity and Adhesive Pattern,” Biomaterials, 32(36), pp. 9584–9593. [CrossRef] [PubMed]
Fu, J. , Wang, Y.-K. , Yang, M. T. , Desai, R. A. , Yu, X. , Liu, Z. , and Chen, C. S. , 2010, “ Mechanical Regulation of Cell Function With Geometrically Modulated Elastomeric Substrates,” Nat. Methods, 7(9), pp. 733–736. [CrossRef] [PubMed]
Balaban, N. Q. , Schwarz, U. S. , Riveline, D. , Goichberg, P. , Tzur, G. , Sabanay, I. , Mahalu, D. , Safran, S. A. , Bershadsky, A. , Addadi, L. , and Geiger, B. , 2001, “ Force and Focal Adhesion Assembly: A Close Relationship Studied Using Elastic Micropatterned Substrates,” Nat. Cell Biol., 3(5), pp. 466–472. [CrossRef] [PubMed]
Riveline, D. , Zamir, E. , Balaban, N. Q. , Schwarz, U. S. , Ishizaki, T. , Narumiya, S. , Kam, Z. , Geiger, B. , and Bershadsky, A. D. , 2001, “ Focal Contacts as Mechanosensors: Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an Mdia1 Dependent and ROCK-Independent Mechanism,” J. Cell Biol., 153(6), pp. 1175–1186. [CrossRef] [PubMed]
Tan, J. L. , Tien, J. , Pirone, D. M. , Gray, D. S. , Bhadriraju, K. , and Chen, C. S. , 2003, “ From the Cover: Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U.S.A., 100(4), pp. 1484–1489. [CrossRef] [PubMed]
Sen, S. , Engler, A. J. , and Discher, D. E. , 2009, “ Matrix Strains Induced by Cells: Computing How Far Cells Can Feel,” Cell. Mol. Bioeng., 2(1), pp. 39–48. [CrossRef] [PubMed]
Mih, J. D. , Marinkovic, A. , Liu, F. , Sharif, A. S. , and Tschumperlin, D. J. , 2012, “ Matrix Stiffness Reverses the Effect of Actomyosin Tension on Cell Proliferation,” J. Cell Sci., 125(Pt 24), pp. 5974–5983. [CrossRef] [PubMed]
Engler, A. J. , Sen, S. , Sweeney, H. L. , and Discher, D. E. , 2006, “ Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, 126(4), pp. 677–689. [CrossRef] [PubMed]
Saez, A. , Ghibaudo, M. , Buguin, A. , Silberzan, P. , and Ladoux, B. , 2007, “ Rigidity-Driven Growth and Migration of Epithelial Cells on Microstructured Anisotropic Substrates,” Proc. Natl. Acad. Sci. U.S.A., 104(20), pp. 8281–8286. [CrossRef] [PubMed]
Lo, C. M. , Wang, H. B. , Dembo, M. , and Wang, Y. L. , 2000, “ Cell Movement is Guided by the Rigidity of the Substrate,” Biophys. J., 79(1), pp. 144–152. [CrossRef] [PubMed]
Stroka, K. M. , and Aranda-Espinoza, H. , 2009, “ Neutrophils Display Biphasic Relationship Between Migration and Substrate Stiffness,” Cell Motil. Cytoskeleton, 66(6), pp. 328–341. [CrossRef] [PubMed]
Peyton, S. R. , and Putnam, A. J. , 2005, “ Extracellular Matrix Rigidity Governs Smooth Muscle Cell Motility in a Biphasic Fashion,” J. Cell. Physiol., 204(1), pp. 198–209. [CrossRef] [PubMed]
Pathak, A. , and Kumar, S. , 2012, “ Independent Regulation of Tumor Cell Migration by Matrix Stiffness and Confinement,” Proc. Natl. Acad. Sci. U.S.A., 109(26), pp. 10334–10339. [CrossRef] [PubMed]
Zhong, Y. , He, S. , and Ji, B. , 2012, “ Mechanics in Mechanosensitivity of Cell Adhesion and Its Roles in Cell Migration,” Int. J. Comput. Mater. Sci. Eng., 1(4), p. 1250032.
Zhong, Y. , and Ji, B. , 2013, “ Impact of Cell Shape on Cell Migration Behavior on Elastic Substrate,” Biofabrication, 5(1), p. 015011. [CrossRef] [PubMed]
Zhong, Y. , and Ji, B. , 2014, “ How Do Cells Produce and Regulate the Driving Force in the Process of Migration?,” Eur. Phys. J.: Spec. Top., 223(7), pp. 1373–1390. [CrossRef]
Tondon, A. , and Kaunas, R. , 2014, “ The Direction of Stretch-Induced Cell and Stress Fiber Orientation Depends on Collagen Matrix Stress,” PLoS One, 9(2), p. e89592. [CrossRef] [PubMed]
Shamloo, A. , 2014, “ Cell-Cell Interactions Mediate Cytoskeleton Organization and Collective Endothelial Cell Chemotaxis,” Cytoskeleton, 71(9), pp. 501–512. [CrossRef] [PubMed]
Hayakawa, K. , Sato, N. , and Obinata, T. , 2001, “ Dynamic Reorientation of Cultured Cells and Stress Fibers Under Mechanical Stress From Periodic Stretching,” Exp. Cell Res., 268(1), pp. 104–114. [CrossRef] [PubMed]
Zhong, Y. , Kong, D. , Dai, L. , and Ji, B. , 2011, “ Frequency-Dependent Focal Adhesion Instability and Cell Reorientation Under Cyclic Substrate Stretching,” Cell. Mol. Bioeng., 4(3), pp. 442–456. [CrossRef]
Kong, D. , Ji, B. , and Dai, L. , 2008, “ Stability of Adhesion Clusters and Cell Reorientation Under Lateral Cyclic Tension,” Biophys. J., 95(8), pp. 4034–4044. [CrossRef] [PubMed]
Kong, D. , Ji, B. , and Dai, L. , 2010, “ Stabilizing to Disruptive Transition of Focal Adhesion Response to Mechanical Forces,” J. Biomech., 43(13), pp. 2524–2529. [CrossRef] [PubMed]
He, S. , Liu, C. , Li, X. , Ma, S. , Huo, B. , and Ji, B. , 2015, “ Dissecting Collective Cell Behavior in Polarization and Alignment on Micropatterned Substrates,” Biophys. J., 109(3), pp. 489–500. [CrossRef] [PubMed]
Dahl, K. N. , Kahn, S. M. , Wilson, K. L. , and Discher, D. E. , 2004, “ The Nuclear Envelope Lamina Network Has Elasticity and a Compressibility Limit Suggestive of a Molecular Shock Absorber,” J. Cell Sci., 117(Pt 20), pp. 4779–4786. [CrossRef] [PubMed]
Chalut, K. J. , Kulangara, K. , Giacomelli, M. G. , Wax, A. , and Leong, K. W. , 2010, “ Deformation of Stem Cell Nuclei by Nanotopographical Cues,” Soft Matter, 6(8), pp. 1675–1681. [CrossRef] [PubMed]
Rohde, G. K. , Ribeiro, A. J. S. , Dahl, K. N. , and Murphy, R. F. , 2008, “ Deformation-Based Nuclear Morphometry: Capturing Nuclear Shape Variation in HeLa Cells,” Cytometry, Part A, 73A(4), pp. 341–350. [CrossRef]
Desai, R. A. , Gao, L. , Raghavan, S. , Liu, W. F. , and Chen, C. S. , 2009, “ Cell Polarity Triggered by Cell-Cell Adhesion Via E-Cadherin,” J. Cell Sci., 122(Pt 7), pp. 905–911. [CrossRef] [PubMed]
Schirmer, E. C. , and Foisner, R. , 2007, “ Proteins That Associate With Lamins: Many Faces, Many Functions,” Exp. Cell Res., 313(10), pp. 2167–2179. [CrossRef] [PubMed]
Anno, T. , Sakamoto, N. , and Sato, M. , 2012, “ Role of Nesprin-1 in Nuclear Deformation in Endothelial Cells Under Static and Uniaxial Stretching Conditions,” Biochem. Biophys. Res. Commun., 424(1), pp. 94–99. [CrossRef] [PubMed]
Dembo, M. , and Wang, Y. L. , 1999, “ Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts,” Biophys. J., 76(4), pp. 2307–2316. [CrossRef] [PubMed]
Lindner, D. , Mathieu, F. , Hild, F. , Allix, O. , Minh, C. H. , and Paulien-Camy, O. , 2015, “ On the Evaluation of Stress Triaxiality Fields in a Notched Titanium Alloy Sample Via Integrated Digital Image Correlation,” ASME J. Appl. Mech., 82(7), p. 071014. [CrossRef]
Landau, L. D. , and Lifshitz, E. M. , 1986, Theory of Elasticity, 3rd ed., E. M. Lifshitz , A. M. Kosevich , and L. P. Pitaevskii , eds., Butterworth-Heinemann, Oxford, UK, p. vii.
Butler, J. P. , Tolic-Norrelykke, I. M. , Fabry, B. , and Fredberg, J. J. , 2002, “ Traction Fields, Moments, and Strain Energy That Cells Exert on Their Surroundings,” Am. J. Physiol.: Cell Physiol., 282(3), pp. C595–605. [CrossRef] [PubMed]
Tambe, D. T. , Hardin, C. C. , Angelini, T. E. , Rajendran, K. , Park, C. Y. , Serra-Picamal, X. , Zhou, E. H. , Zaman, M. H. , Butler, J. P. , Weitz, D. A. , Fredberg, J. J. , and Trepat, X. , 2011, “ Collective Cell Guidance by Cooperative Intercellular Forces,” Nat. Mater., 10(6), pp. 469–475. [CrossRef] [PubMed]
Serra-Picamal, X. , Conte, V. , Vincent, R. , Anon, E. , Tambe, D. T. , Bazellieres, E. , Butler, J. P. , Fredberg, J. J. , and Trepat, X. , 2012, “ Mechanical Waves During Tissue Expansion,” Nat. Phys., 8(8), pp. 628–634. [CrossRef]
Rezakhaniha, R. , Agianniotis, A. , Schrauwen, J. T. , Griffa, A. , Sage, D. , Bouten, C. V. , van de Vosse, F. N. , Unser, M. , and Stergiopulos, N. , 2012, “ Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy,” Biomech. Model. Mechanobiol., 11(3–4), pp. 461–473. [CrossRef] [PubMed]
Edwards, C. M. , and Schwarz, U. S. , 2011, “ Force Localization in Contracting Cell Layers,” Phys. Rev. Lett., 107(12), p. 128101. [CrossRef] [PubMed]
He, S. , Su, Y. , Ji, B. , and Gao, H. , 2014, “ Some Basic Questions on Mechanosensing in Cell–Substrate Interaction,” J. Mech. Phys. Solids, 70, pp. 116–135. [CrossRef]
Li, L. , Yao, H. , and Wang, J. , 2015, “ Dynamic Strength of Molecular Bond Clusters Under Displacement- and Force-Controlled Loading Conditions,” ASME J. Appl. Mech., 83(2), p. 021004. [CrossRef]
Chen, X. , and Chen, B. , 2014, “ Probing the Instability of a Cluster of Slip Bonds Upon Cyclic Loads With a Coupled Finite Element Analysis and Monte Carlo Method,” ASME J. Appl. Mech., 81(11), p. 111002. [CrossRef]
Deguchi, S. , Ohashi, T. , and Sato, M. , 2006, “ Tensile Properties of Single Stress Fibers Isolated From Cultured Vascular Smooth Muscle Cells,” J. Biomech., 39(14), pp. 2603–2610. [CrossRef] [PubMed]
Lu, L. , Feng, Y. F. , Hucker, W. J. , Oswald, S. J. , Longmore, G. D. , and Yin, F. C. P. , 2008, “ Actin Stress Fiber Pre-Extension in Human Aortic Endothelial Cells,” Cell Motil. Cytoskeleton, 65(4), pp. 281–294. [CrossRef] [PubMed]
Schwarz, U. S. , Erdmann, T. , and Bischofs, I. B. , 2006, “ Focal Adhesions as Mechanosensors: The Two-Spring Model,” Biosystems, 83(2–3), pp. 225–232. [CrossRef] [PubMed]
Kendall, K. , 1971, “ The Adhesion and Surface Energy of Elastic Solids,” J. Phys. D: Appl. Phys., 4(8), p. 1186. [CrossRef]
Trepat, X. , Wasserman, M. R. , Angelini, T. E. , Millet, E. , Weitz, D. A. , Butler, J. P. , and Fredberg, J. J. , 2009, “ Physical Forces During Collective Cell Migration,” Nat. Phys., 5(6), pp. 426–430. [CrossRef]
Gruenbaum, Y. , Wilson, K. L. , Harel, A. , Goldberg, M. , and Cohen, M. , 2000, “ Nuclear Lamins-Structural Proteins With Fundamental Functions,” J. Struct. Biol., 129(2–3), pp. 313–323. [CrossRef] [PubMed]
Thery, M. , 2010, “ Micropatterning as a Tool to Decipher Cell Morphogenesis and Functions,” J. Cell Sci., 123(24), pp. 4201–4213. [CrossRef] [PubMed]
De, R. , Zemel, A. , and Safran, S. A. , 2007, “ Dynamics of Cell Orientation,” Nat. Phys., 3(9), pp. 655–659. [CrossRef]
Bischofs, I. B. , and Schwarz, U. S. , 2003, “ Cell Organization in Soft Media Due to Active Mechanosensing,” Proc. Natl. Acad. Sci. U.S.A., 100(16), pp. 9274–9279. [CrossRef] [PubMed]
Yim, E. K. , Reano, R. M. , Pang, S. W. , Yee, A. F. , Chen, C. S. , and Leong, K. W. , 2005, “ Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells,” Biomaterials, 26(26), pp. 5405–5413. [CrossRef] [PubMed]
Mertz, A. F. , Banerjee, S. , Che, Y. , German, G. K. , Xu, Y. , Hyland, C. , Marchetti, M. C. , Horsley, V. , and Dufresne, E. R. , 2012, “ Scaling of Traction Forces With the Size of Cohesive Cell Colonies,” Phys. Rev. Lett., 108(19), p. 198101. [CrossRef] [PubMed]
Reinhart-King, C. A. , Dembo, M. , and Hammer, D. A. , 2008, “ Cell-Cell Mechanical Communication Through Compliant Substrates,” Biophys. J., 95(12), pp. 6044–6051. [CrossRef] [PubMed]
Guo, W. H. , Frey, M. T. , Burnham, N. A. , and Wang, Y. L. , 2006, “ Substrate Rigidity Regulates the Formation and Maintenance of Tissues,” Biophys. J., 90(6), pp. 2213–2220. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The schematic illustration of cell traction measurement. (a) Upper: the cells adhering on the gel substrate; lower: the cells treated with trypsin for removing off from the gel. (b) Upper: the fluorescence image of gel surface with cells; lower: the fluorescence image of gel surface without cells for measuring the substrate deformation.

Grahic Jump Location
Fig. 2

Free-body diagram of the element in cell layer. (a) The cell layer restrained by ringlike pattern substrate. (b) The top view of the free-body diagram of the element. (c) The side view of the free-body diagram of the element.

Grahic Jump Location
Fig. 3

Cell alignment and polarization on the ring patterned substrate. (a) A quarter of phase contrast images of cell morphology on 60 kPa and 10 kPa PAA gel substrate with ring pattern (scale bar: 50 μm); (b) polar plot of cell angle distribution with respect to the circumferential angle; and (c) the mean cell angle as function of the distance to the ring center for two different stiffnesses. (d) The mean aspect ratio of cells versus the distance to the center of the ring pattern of different stiffnesses. #: 60 kPa versus 10 kPa, p < 0.05.

Grahic Jump Location
Fig. 4

Actin distribution on the ringlike patterned substrate. (a) F-actin fluorescence image on 60 kPa gel; a zoom-in image illustrating how orientationj works. The yellow dotted ellipse shows the region of interest. The angle ϕ is defined as the angle between the major axis of the red ellipse and the horizontal direction, given by Eq. (A3) in the Appendix. And the angle θbetween the major axis of the red solid ellipse and the circumferential direction of the ring pattern can be calculated when ϕ is obtained. (b) F-actin fluorescence image on 10 kPa gel. (c) Actin orientation angle versus the radial position; (d) actin coherency versus the radial position. Scale bar: 50 μm. #:60 kPa versus 10 kPa, p < 0.05.

Grahic Jump Location
Fig. 5

Nucleus alignment and polarization on the ringlike patterned substrate. (a) Nucleus fluorescence image on 60 kPa gel; (b) nucleus fluorescence image on 10 kPa gel. (c) Nucleus orientation angle versus the radial position; (d) nucleus aspect ratio versus the radial position. Scale bar: 50 μm.

Grahic Jump Location
Fig. 6

In-plane stresses in the cell layer. (a) Color map of predictions of in-plane maximum shear stress; (b) vectorial representation of predictions of the in-plane maximum principal stress; (c) the predictions of the in-plane maximum shear stress for two different substrate stiffnesses; (d) and (g) color map of the measured in-plane maximum shear stress on the 30 kPa gel (d) and 10 kPa gel (g); (e) and (h) the vectorial representation of the measured maximum principal stress on the 30 kPa gel (e) and 10 kPa gel (h); and (f) and (i) the measured in-plane maximum shear stress as function of the distance to the ring center on the 30 kPa gel (f) and 10 kPa gel (i). Scale bar: 50 μm.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In