0
Technical Brief

A Variationally Consistent Approach to Constrained Motion

[+] Author and Article Information
John T. Foster

Department of Petroleum and Geosystems Engineering,
Department of Aerospace Engineering and
Engineering Mechanics,
The University of Texas at Austin,
Austin, TX 78712
e-mail: jfoster@austin.utexas.edu

Manuscript received August 10, 2015; final manuscript received February 19, 2016; published online March 15, 2016. Assoc. Editor: Alexander F. Vakakis.

J. Appl. Mech 83(5), 054501 (Mar 15, 2016) (4 pages) Paper No: JAM-15-1422; doi: 10.1115/1.4032856 History: Received August 10, 2015; Revised February 19, 2016

A variationally consistent approach to constrained rigid-body motion is presented that extends D'Alembert's principle in a way that has a form similar to Kane's equations. The method results in minimal equations of motion for both holonomic and nonholonomic systems without a priori consideration of preferential coordinates.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lagrange, J. L. , 1853, Mécanique analytique, Vol. 1, Mallet-Bachelier, Paris.
Appell, P. , 1911, “ Exemple du mouvement d'un systeme assujetti à une liason exprimée par une relation non linéaires entre des composantes de la vitesse,” Rend. Circ. Mat. Palermo, 32, pp. 48–50. [CrossRef]
Ray, J. R. , 1972, “ Nonholonomic Constraints and Gauss's Principle of Least Constraint,” Am. J. Phys., 40(1), pp. 179–183. [CrossRef]
Maggi, G. A. , 1896, Principii della teoria matematica del movimento dei corpi: corso di meccanica razionale, Ulrico Hoepli, Milan, Italy.
Maggi, G. A. , 1901, “ Di alcune nuove forme delle equazioni della Dinamica applicabili ai systemi anolonomi,” Atti della Reale Accademia dei Lincei, Rendiconti, Classe di scienze fisiche, matematiche e naturali, Seria 5, 10(12), pp. 287–292.
Papastavridis, J. G. , 1990, “ Maggi's Equations of Motion and the Determination of Constraint Reactions,” J. Guid., Control, Dyn., 13(2), pp. 213–220. [CrossRef]
Udwadia, F. E. , and Kalaba, R. E. , 1992, “ A New Perspective on Constrained Motion,” Proc. R. Soc. London, Ser. A, 439(1906), pp. 407–410. [CrossRef]
Barhorst, A. A. , 1995, “ An Alternative Derivation of Some New Perspectives on Constrained Motion,” ASME J. Appl. Mech., 62(1), pp. 243–245. [CrossRef]
Kane, T. R. , and Levinson, D. A. , 1985, Dynamics, Theory and Applications, McGraw Hill, New York.
Desloge, E. A. , 1987, “ Relationship Between Kane's Equations and the Gibbs–Appell Equations,” J. Guid., Control, Dyn., 10(1), pp. 120–122. [CrossRef]
Gibbs, J. W. , 1961, The Scientific Papers of JW Gibbs, Vol. 1, Dover Publications, NY.
Gatland, I. R. , 2004, “ Nonholonomic Constraints: A Test Case,” Am. J. Phys., 72(7), pp. 941–942. [CrossRef]
Barhorst, A. A. , 2004, “ Systematic Closed Form Modeling of Hybrid Parameter Multiple Body Systems,” Int. J. Non-Linear Mech., 39(1), pp. 63–78. [CrossRef]
Barhorst, A. A. , 2004, “ On the Efficacy of Pseudo-Coordinates—Part 1: Moving Interior Constraints,” Int. J. Non-Linear Mech., 39(1), pp. 123–135. [CrossRef]
Barhorst, A. A. , 2004, “ On the Efficacy of Pseudo-Coordinates—Part 2: Moving Boundary Constraints,” Int. J. Non-Linear Mech., 39(1), pp. 137–151. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A particle constrained to move along a parabola

Grahic Jump Location
Fig. 2

Two-wheeled cart driven by electrostatic forces. The wheels turn independently.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In