Lamé,
G.
, 1852, Leçons sur la théorie mathématique de l'élasticité des corps solides,
Bachelier,
Paris.

Love,
A. E. H.
, 1927, A Treatise on the Mathematical Theory of Elasticity, 4th ed.,
Cambridge University Press,
Cambridge, UK.

Alijani,
F.
, and
Amabili,
M.
, 2014, “
Non-Linear Vibrations of Shells: A Literature Review From 2003 to 2013,” Int. J. Non-Linear Mech.,
58, pp. 233–257.

[CrossRef]
Lurie,
A. I.
, 2005, Theory of Elasticity,
Springer-Verlag,
Berlin.

Lopes,
S. R. X.
,
Gonçalves,
P. B.
, and
Pamplona,
D. C.
, 2007, “
Influence of Initial Geometric Imperfections on the Stability of Thick Cylindrical Shells Under Internal Pressure,” Commun. Numer. Methods Eng.,
23(6), pp. 577–597.

[CrossRef]
Gonçalves,
P. B.
,
Pamplona,
D.
, and
Lopes,
S. R. X.
, 2008, “
Finite Deformations of an Initially Stressed Cylindrical Shell Under Internal Pressure,” Int. J. Mech. Sci.,
50(1), pp. 92–103.

[CrossRef]
Guo,
Z.
,
Wang,
S.
,
Li,
L.
,
Ji,
H.
,
Wang,
Z.
, and
Cai,
S.
, 2014, “
Inflation of Stressed Cylindrical Tubes: An Experimental Study,” Proc. SPIE,
9234, p. 92340H.

Haughton,
D. M.
, and
Ogden,
R. W.
, 1979, “
Bifurcation of Inflated Circular Cylinders of Elastic Material Under Axial Loading—II: Exact Theory for Thick-Walled Tubes,” J. Mech. Phys. Solids,
27(5–6), pp. 489–512.

[CrossRef]
Akyuz,
U.
, and
Ertepinar,
A.
, 1998, “
Stability and Asymmetric Vibrations of Pressurized Compressible Hyperelastic Cylindrical Shells,” Int. J. Non-Linear Mech.,
34(3), pp. 391–404.

[CrossRef]
Chen,
Y.-C.
, and
Haughton,
D. M.
, 2003, “
Stability and Bifurcation of Inflation of Elastic Cylinders,” Proc. R. Soc. London, Ser. A,
459(2029), pp. 137–156.

[CrossRef]
Zhu,
Y.
,
Luo,
X. Y.
, and
Ogden,
R. W.
, 2008, “
Asymmetric Bifurcations of Thick-Walled Circular Cylindrical Elastic Tubes Under Axial Loading and External Pressure,” Int. J. Solids Struct.,
45(11–12), pp. 3410–3429.

[CrossRef]
Zhu,
Y.
,
Luo,
X. Y.
, and
Ogden,
R. W.
, 2010, “
Nonlinear Axisymmetric Deformations of an Elastic Tube Under External Pressure,” Eur. J. Mech. A/Solids,
29(2), pp. 216–229.

[CrossRef]
Zhu,
Y.
,
Luo,
X. Y.
,
Wang,
H. M.
,
Ogden,
R. W.
, and
Berry,
C.
, 2013, “
Three-Dimensional Non-Linear Buckling of Thick-Walled Elastic Tubes Under Pressure,” Int. J. Non-Linear Mech.,
48, pp. 1–14.

[CrossRef]
Kozlovsky,
P.
,
Zaretsky,
U.
,
Jaffa,
A. J.
, and
Elad,
D.
, 2014, “
General Tube Law for Collapsible Thin and Thick-Wall Tubes,” J. Biomech.,
47(10), pp. 2378–2384.

[CrossRef] [PubMed]
Knowles,
J. K.
, 1960, “
Large Amplitude Oscillations of a Tube of Incompressible Elastic Material,” Q. Appl. Math.,
18, pp. 71–77.

Knowles,
J. K.
, 1962, “
On a Class of Oscillations in the Finite Deformation Theory of Elasticity,” ASME J. Appl. Mech.,
29(2), pp. 283–286.

[CrossRef]
Wang,
A. S. D.
, and
Ertepinar,
A.
, 1972, “
Stability and Vibrations of Elastic Thick-Walled Cylindrical and Spherical Shells Subjected to Pressure,” Int. J. Non-Linear Mech.,
7(5), pp. 539–555.

[CrossRef]
Calderer,
C.
, 1983, “
The Dynamical Behaviour of Nonlinear Elastic Spherical Shells,” J. Elasticity,
13(1), pp. 17–47.

[CrossRef]
Ren,
J.-S.
, 2008, “
Dynamical Response of Hyper-Elastic Cylindrical Shells Under Periodic Load,” Appl. Math. Mech.,
29(10), pp. 1319–1327.

[CrossRef]
Breslavsky,
I.
,
Amabili,
M.
, and
Legrand,
M.
, 2014, “
Physically and Geometrically Non-Linear Vibrations of Thin Rectangular Plates,” Int. J. Non-Linear Mech.,
58, pp. 30–40.

[CrossRef]
Amabili,
M.
,
Karazis,
K.
,
Mongrain,
R.
,
Païdoussis,
M. P.
, and
Cartier,
R.
, 2012, “
A Three-Layer Model for Buckling of a Human Aortic Segment Under Specific Flow-Pressure Conditions,” Int. J. Numer. Methods Biomed. Eng.,
28(5), pp. 495–512.

[CrossRef]
Breslavsky,
I. D.
,
Amabili,
M.
, and
Legrand,
M.
, 2014, “
Nonlinear Vibrations of Thin Hyperelastic Plates,” J. Sound Vib.,
333(19), pp. 4668–4681.

[CrossRef]
Holzapfel,
G. A.
, 2006, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure,” J. Theor. Biol.,
238(2), pp. 290–302.

[CrossRef] [PubMed]
Amabili,
M.
, and
Breslavsky,
I. D.
, 2015, “
Displacement Dependent Pressure Load for Finite Deflection of Shells and Plates,” Int. J. Non-Linear Mech.,
77, pp. 265–273.

[CrossRef]
Breslavsky,
I. D.
,
Amabili,
M.
, and
Legrand,
M.
, 2016, “
Axisymmetric Deformations of Circular Rings Made of Linear and Neo-Hookean Materials Under Internal and External Pressure,” Int. J. Non-Linear Mech. (to be published).

Amabili,
M.
, and
Reddy,
J. N.
, 2010, “
A New Non-Linear Higher-Order Shear Deformation Theory for Large-Amplitude Vibrations of Laminated Doubly Curved Shells,” Int. J. Non-Linear Mech.,
45(4), pp. 409–418.

[CrossRef]
Ogden,
R.
, 1997, Non-Linear Elastic Deformations,
Dover Publications,
New York.

Amabili,
M.
, 2008, Nonlinear Vibrations and Stability of Shells and Plates,
Cambridge University Press,
New York.

Atkinson,
K. E.
, 1989, An Introduction to Numerical Analysis, 2nd ed.,
Wiley,
New York.

Amabili,
M.
, 2015, “
A New Third-Order Shear Deformation Theory With Non-Linearities in Shear for Static and Dynamic Analysis of Laminated Doubly Curved Shells,” Compos. Struct.,
128, pp. 260–273.

[CrossRef]
Leissa,
A. W.
, 1973, Vibrations of Shells,
National Aeronautics and Space Administration,
Washington, DC.

Parker,
T. S.
, and
Chua,
L. O.
, 1989, Practical Numerical Algorithms for Chaotic Systems,
Springer-Verlag,
New York.

Doedel,
E. J.
,
Champneys,
A. R.
,
Fairgrieve,
T. F.
,
Kuznetsov,
Y. A.
,
Sandstede,
B.
, and
Wang,
X.
, 1998, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont),
Concordia University,
Montreal, QC, Canada.