de Saint-Venant,
J. C.-B.
, 1855, “
Mémoire sur la Torsion des Prismes,” Receuil Savants Étrangers,
14, pp. 233–560.

de Saint-Venant,
J. C.-B.
, 1856, “
Mémoire sur la Flexion des Prismes,” J. Math. Liouville,
1, pp. 89–189.

Love,
A.
, 1944, A Treatise on the Mathematical Theory of Elasticity, 4th ed.,
Dover,
New York.

Timoshenko,
S.
, and
Goodier,
J.
, 1970, Theory of Elasticity, 3rd ed.,
McGraw-Hill,
New York.

Lekhnitskii,
S.
, 1977, Theory of Elasticity of an Anisotropic Body, 2nd ed.,
MIR Publishers,
Moscow, Russia.

Ieşan,
D.
, 1976, “
Saint-Venant's Problem for Inhomogeneous and Anisotropic Elastic Bodies,” J. Elasticity,
6(3), pp. 277–294.

[CrossRef]
Ieşan,
D.
, 1986, “
On Saint-Venant's Problem,” Arch. Ration. Mech. Anal.,
91(4), pp. 363–373.

[CrossRef]
Dong,
S.
,
Kosmatka,
J.
, and
Lin,
H.
, 2001, “
On Saint-Venant's Problem for an Inhomogeneous, Anisotropic Cylinder-Part I: Methodology for Saint-Venant Solutions,” ASME J. Appl. Mech.,
68(3), pp. 376–381.

[CrossRef]
Kosmatka,
J.
,
Lin,
H.
, and
Dong,
S.
, 2001, “
On Saint-Venant's Problem for an Inhomogeneous, Anisotropic Cylinder-Part II: Cross-Sectional Properties,” ASME J. Appl. Mech.,
68(3), pp. 382–391.

[CrossRef]
Lin,
H.
,
Kosmatka,
J.
, and
Dong,
S.
, 2001, “
On Saint-Venant's Problem for an Inhomogeneous, Anisotropic Cylinder-Part III: End Effects,” ASME J. Appl. Mech.,
68(3), pp. 392–398.

[CrossRef]
Berdichevsky,
V.
, 1982, “
On the Energy of an Elastic Rod,” Prikl. Mat. Mekanika,
45(4), pp. 518–529.

Atilgan,
A.
, and
Hodges,
D.
, 1991, “
Unified Nonlinear Analysis for Nonhomogeneous Anisotropic Beams With Closed Cross-Sections,” AIAA J.,
29(11), pp. 1990–1999.

[CrossRef]
Atilgan,
A.
,
Hodges,
D.
, and
Fulton,
M.
, 1991, “
Nonlinear Deformation of Composite Beams: Unification of Cross-Sectional and Elastica Analyses,” ASME Appl. Mech. Rev.,
44(11), pp. S9–S15.

[CrossRef]
Hodges,
D.
, 2006, Nonlinear Composite Beam Theory,
AIAA,
Reston, VA.

Yu,
W.
,
Hodges,
D.
,
Volovoi,
V.
, and
Cesnik,
C.
, 2002, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams,” Int. J. Solids Struct.,
39(19), pp. 5101–5121.

[CrossRef]
Buannic,
N.
, and
Cartraud,
P.
, 2001, “
Higher-Order Effective Modeling of Periodic Heterogeneous Beams. I. Asymptotic Expansion Method,” Int. J. Solids Struct.,
38(40–41), pp. 7139–7161.

[CrossRef]
Buannic,
N.
, and
Cartraud,
P.
, 2001, “
Higher-Order Effective Modeling of Periodic Heterogeneous Beams. II. Derivation of the Proper Boundary Conditions for the Interior Asymptotic Solution,” Int. J. Solids Struct.,
38(40–41), pp. 7163–7180.

[CrossRef]
Kim,
J. S.
,
Cho,
M.
, and
Smith,
E. C.
, 2008, “
An Asymptotic Analysis of Composite Beams With Kinematically Corrected End Effects,” Int. J. Solids Struct.,
45(7–8), pp. 1954–1977.

[CrossRef]
Giavotto,
V.
,
Borri,
M.
,
Mantegazza,
P.
,
Ghiringhelli,
G.
,
Carmaschi,
V.
,
Maffioli,
G.
, and
Mussi,
F.
, 1983, “
Anisotropic Beam Theory and Applications,” Comput. Struct.,
16(1–4), pp. 403–413.

[CrossRef]
Borri,
M.
,
Ghiringhelli,
G.
, and
Merlini,
T.
, 1992, “
Linear Analysis of Naturally Curved and Twisted Anisotropic Beams,” Compos. Eng.,
2(5–7), pp. 433–456.

[CrossRef]
Mielke,
A.
, 1988, “
Saint-Venant's Problem and Semi-Inverse Solutions in Nonlinear Elasticity,” Arch. Ration. Mech. Anal.,
102(3), pp. 205–229.

[CrossRef]
Mielke,
A.
, 1990, “
Normal Hyperbolicity of Center Manifolds and Saint-Venant's Principle,” Arch. Ration. Mech. Anal.,
110(4), pp. 353–372.

[CrossRef]
Zhong,
W.
, 1991, “
Plane Elasticity Problem in Strip Domain and Hamiltonian System,” J. Dalian Univ. Technol.,
31(4), pp. 373–384.

Zhong,
W.
, 1995, A New Systematic Methodology for Theory of Elasticity,
Dalian University of Technology Press,
Dalian, China.

Morandini,
M.
,
Chierichetti,
M.
, and
Mantegazza,
P.
, 2010, “
Characteristic Behavior of Prismatic Anisotropic Beam Via Generalized Eigenvectors,” Int. J. Solids Struct.,
47(10), pp. 1327–1337.

[CrossRef]
Druz,
A.
, and
Ustinov,
Y.
, 1996, “
Green's Tensor for an Elastic Cylinder and Its Applications in the Development of the Saint-Venant Theory,” J. Appl. Math. Mech.,
60(1), pp. 97–104.

[CrossRef]
Druz,
A.
,
Polyakov,
N.
, and
Ustinov,
Y.
, 1996, “
Homogeneous Solutions and Saint-Venant Problems for a Naturally Twisted Rod,” J. Appl. Math. Mech.,
60(4), pp. 657–664.

[CrossRef]
Ustinov,
Y. A.
, 2003, “
Solutions of the Saint Venant Problem for a Cylinder With Helical Anisotropy,” J. Appl. Math. Mech.,
67(1), pp. 89–98.

[CrossRef]
Ladevèze,
P.
, and
Simmonds,
J.
, 1998, “
New Concepts for Linear Beam Theory With Arbitrary Geometry and Loading,” Eur. J. Mech.: A/Solids,
17(3), pp. 377–402.

[CrossRef]
Fatmi,
R. E.
, and
Zenzri,
H.
, 2002, “
On the Structural Behavior and the Saint-Venant Solution in the Exact Beam Theory: Application to Laminated Composite Beams,” Comput. Struct.,
80(16–17), pp. 1441–1456.

[CrossRef]
Fatmi,
R. E.
, and
Zenzri,
H.
, 2004, “
A Numerical Method for the Exact Elastic Beam Theory. Applications to Homogeneous and Composite Beams,” Int. J. Solids Struct.,
41(9–10), pp. 2521–2537.

[CrossRef]
Bauchau,
O.
, and
Han,
S.
, 2014, “
Three-Dimensional Beam Theory for Flexible Multibody Dynamics,” J. Comput. Nonlinear Dyn.,
9(4), p. 041011.

[CrossRef]
Han,
S.
, and
Bauchau,
O.
, 2015, “
Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics,” Multibody Syst. Dyn.,
34(3), pp. 211–242.

[CrossRef]
Bauchau,
O.
, 2011, Flexible Multibody Dynamics,
Springer,
Dordrecht.

Lanczos,
C.
, 1970, The Variational Principles of Mechanics,
Dover,
New York.

Borri,
M.
, and
Bottasso,
C.
, 1993, “
A General Framework for Interpreting Time Finite Element Formulations,” Comput. Mech.,
13(3), pp. 133–142.

[CrossRef]
Yao,
W.
,
Zhong,
W.
, and
Lim,
C.
, 2009, Symplectic Elasticity,
World Scientific,
Hackensack, NJ.

Freiberger,
W.
, 1949, “
The Uniform Torsion of an Incomplete Tore,” Aust. J. Sci. Res., Ser. A,
2(3), pp. 354–375.