Lu,
L.
,
Chen,
X.
,
Huang,
X.
, and
Lu,
K.
, 2009, “
Revealing the Maximum Strength in Nanotwinned Copper,” Science,
323(5914), pp. 607–610.
[CrossRef] [PubMed]
Wei,
Y.
,
Li,
Y.
,
Zhu,
L.
,
Liu,
Y.
,
Lei,
X.
,
Wang,
G.
,
Wu,
Y.
,
Mi,
Z.
,
Liu,
J.
,
Wang,
H.
, and
Gao,
H.
, 2014, “
Evading the Strength–Ductility Trade-Off Dilemma in Steel Through Gradient Hierarchical Nanotwins,” Nat. Commun.,
5, pp. 1–8.
Li,
X.
,
Wei,
Y.
,
Lu,
L.
,
Lu,
K.
, and
Gao,
H.
, 2010, “
Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals,” Nature,
464(7290), pp. 877–880.
[CrossRef] [PubMed]
Lu,
L.
,
Dao,
M.
,
Zhu,
T.
, and
Li,
J.
, 2009, “
Size Dependence of Rate-Controlling Deformation Mechanisms in Nanotwinned Copper,” Scr. Mater.,
60(12), pp. 1062–1066.
[CrossRef]
Lu,
L.
,
Schwaiger,
R.
,
Shan,
Z. W.
,
Dao,
M.
,
Lu,
K.
, and
Suresh,
S.
, 2005, “
Nano-Sized Twins Induce High Rate Sensitivity of Flow Stress in Pure Copper,” Acta Mater.,
53(7), pp. 2169–2179.
[CrossRef]
Yamakov,
V.
,
Wolf,
D.
,
Phillpot,
S. R.
, and
Gleiter,
H.
, 2003, “
Dislocation–Dislocation and Dislocation–Twin Reactions in Nanocrystalline Al by Molecular Dynamics Simulation,” Acta Mater.,
51(14), pp. 4135–4147.
[CrossRef]
Jin,
Z. H.
,
Gumbsch,
P.
,
Albe,
K.
,
Ma,
E.
,
Lu,
K.
,
Gleiter,
H.
, and
Hahn,
H.
, 2008, “
Interactions Between Non-Screw Lattice Dislocations and Coherent Twin Boundaries in Face-Centered Cubic Metals,” Acta Mater.,
56(5), pp. 1126–1135.
[CrossRef]
Jin,
Z. H.
,
Gumbsch,
P.
,
Ma,
E.
,
Albe,
K.
,
Lu,
K.
,
Hahn,
H.
, and
Gleiter,
H.
, 2006, “
The Interaction Mechanism of Screw Dislocations With Coherent Twin Boundaries in Different Face-Centred Cubic Metals,” Scr. Mater.,
54(6), pp. 1163–1168.
[CrossRef]
Zhu,
Y. T.
,
Wu,
X. L.
,
Liao,
X. Z.
,
Narayan,
J.
,
Kecskés,
L. J.
, and
Mathaudhu,
S. N.
, 2011, “
Dislocation–Twin Interactions in Nanocrystalline FCC Metals,” Acta Mater.,
59(2), pp. 812–821.
[CrossRef]
Li,
N.
,
Wang,
J.
,
Huang,
J. Y.
,
Misra,
A.
, and
Zhang,
X.
, 2011, “
Influence of Slip Transmission on the Migration of Incoherent Twin Boundaries in Epitaxial Nanotwinned Cu,” Scr. Mater.,
64(2), pp. 149–152.
[CrossRef]
Stukowski,
A.
,
Albe,
K.
, and
Farkas,
D.
, 2010, “
Nanotwinned FCC Metals: Strengthening Versus Softening Mechanisms,” Phys. Rev. B,
82(22), p. 224103.
Wang,
Y. B.
,
Wu,
B.
, and
Sui,
M. L.
, 2008, “
Dynamical Dislocation Emission Processes From Twin Boundaries,” Appl. Phys. Lett.,
93(4), p. 041906.
[CrossRef]
Frøseth,
A. G.
,
Derlet,
P. M.
, and
Van Swygenhoven,
H.
, 2006, “
Vicinal Twin Boundaries Providing Dislocation Sources in Nanocrystalline Al,” Scr. Mater.,
54(3), pp. 477–481.
Zhou,
H.
,
Qu,
S.
, and
Yang,
W.
, 2010, “
Toughening by Nano-Scaled Twin Boundaries in Nanocrystals,” Modell. Simul. Mater. Sci. Eng.,
18(6), p. 065002.
[CrossRef]
Zhou,
H. F.
,
Li,
X. Y.
,
Qu,
S. X.
,
Yang,
W.
, and
Gao,
H. J.
, 2014, “
A Jogged Dislocation Governed Strengthening Mechanism in Nanotwinned Metals,” Nano Lett.,
14(9), pp. 5075–5080.
[CrossRef] [PubMed]
Zhu,
L.
,
Ruan,
H.
,
Li,
X.
,
Dao,
M.
,
Gao,
H.
, and
Lu,
J.
, 2011, “
Modeling Grain Size Dependent Optimal Twin Spacing for Achieving Ultimate High Strength and Related High Ductility in Nanotwinned Metals,” Acta Mater.,
59(14), pp. 5544–5557.
[CrossRef]
Zhang,
X.
,
Romanov,
A. E.
, and
Aifantis,
E. C.
, 2011, “
On Gradient Nanomechanics: Plastic Flow in Nanopolycrystals,” 5th International Conference on Nanomaterials by Severe Plastic Deformation, NanoSPD5, pp. 991–996.
Zhang,
X.
, and
Aifantis,
K. E.
, 2015, “
Examining the Evolution of the Internal Length as a Function of Plastic Strain,” Mater. Sci. Eng. A,
631, pp. 27–32.
[CrossRef]
Zhang,
X.
,
Aifantis,
K. E.
,
Senger,
J.
,
Weygand,
D.
, and
Zaiser,
M.
, 2014, “
Internal Length Scale and Grain Boundary Yield Strength in Gradient Models of Polycrystal Plasticity: How Do They Relate to the Dislocation Microstructure?” J. Mater. Res.,
29(18), pp. 2116–2128.
[CrossRef]
Voyiadjis,
G. Z.
, and
Abu Al-Rub,
R.
, 2004, “
Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory,” IUTAM Symposium on Multiscale Modeling and Characterization of Elastic–Inelastic Behavior of Engineering Materials, Marrakech, Morocco, Oct. 20–25, Springer, Dordrecht, Vol.
114, pp. 167–174.
Nix,
W. D.
, and
Gao,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity,” J. Mech. Phys. Solids,
46(3), pp. 411–425.
[CrossRef]
Zhao,
J.
,
Zhang,
X.
,
Konstantinidis,
A. A.
, and
Kang,
G.
, 2015, “
Correlating the Internal Length in Strain Gradient Plasticity Theory With the Microstructure of Material,” Philos. Mag. Lett.,
95(6), pp. 340–349.
[CrossRef]
Zhang,
X.
, and
Aifantis,
K.
, 2015, “
Interpreting the Internal Length Scale in Strain Gradient Plasticity,” Rev. Adv. Mater. Sci.,
41(1), pp. 72–83.
Aifantis,
K. E.
, and
Konstantinidis,
A. A.
, 2009, “
Yielding and Tensile Behavior of Nanocrystalline Copper,” Mater. Sci. Eng. A,
503(1–2), pp. 198–201.
[CrossRef]
Aifantis,
K. E.
, and
Willis,
J. R.
, 2005, “
The Role of Interfaces in Enhancing the Yield Strength of Composites and Polycrystals,” J. Mech. Phys. Solids,
53(5), pp. 1047–1070.
[CrossRef]
Aifantis,
K. E.
,
Soer,
W. A.
,
De Hosson,
J. T. M.
, and
Willis,
J. R.
, 2006, “
Interfaces Within Strain Gradient Plasticity: Theory and Experiments,” Acta Mater.,
54(19), pp. 5077–5085.
[CrossRef]
Estrin,
Y.
, and
Mecking,
H.
, 1984, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models,” Acta Metall.,
32(1), pp. 57–70.
[CrossRef]
Hirth,
J. P.
, and
Lothe,
J.
, 1982, Theory of Dislocations,
Wiley,
New York.
Meyers,
M. A.
,
Mishra,
A.
, and
Benson,
D. J.
, 2006, “
Mechanical Properties of Nanocrystalline Materials,” Prog. Mater Sci.,
51(4), pp. 427–556.
[CrossRef]
Evers,
L. P.
,
Parks,
D. M.
,
Brekelmans,
W. A. M.
, and
Geers,
M. G. D.
, 2002, “
Crystal Plasticity Model With Enhanced Hardening by Geometrically Necessary Dislocation Accumulation,” J. Mech. Phys. Solids,
50(11), pp. 2403–2424.
[CrossRef]
Armstrong,
R.
,
Codd,
I.
,
Douthwaite,
R. M.
, and
Petch,
N. J.
, 1962, “
The Plastic Deformation of Polycrystalline Aggregates,” Philos. Mag.,
7(73), pp. 45–58.
[CrossRef]
Zhang,
X.
, and
Aifantis,
K. E.
, 2011, “
Interpreting the Softening of Nanomaterials Through Gradient Plasticity,” J. Mater. Res.,
26(11), pp. 1399–1405.
[CrossRef]
Kocks,
U. F.
, and
Mecking,
H.
, 2003, “
Physics and Phenomenology of Strain Hardening: The FCC Case,” Prog. Mater Sci.,
48(3), pp. 171–273.
[CrossRef]
Lu,
L.
,
You,
Z. S.
, and
Lu,
K.
, 2012, “
Work Hardening of Polycrystalline Cu With Nanoscale Twins,” Scr. Mater.,
66(11), pp. 837–842.
[CrossRef]
Ma,
A.
, and
Roters,
F.
, 2004, “
A Constitutive Model for FCC Single Crystals Based on Dislocation Densities and Its Application to Uniaxial Compression of Aluminium Single Crystals,” Acta Mater.,
52(12), pp. 3603–3612.
[CrossRef]
Konstantinidis,
A. A.
,
Aifantis,
K. E.
, and
De Hosson,
J. T. M.
, 2014, “
Capturing the Stochastic Mechanical Behavior of Micro and Nanopillars,” Mater. Sci. Eng. A,
597, pp. 89–94.
[CrossRef]
Zhang,
X.
,
Aifantis,
K. E.
, and
Zaiser,
M.
, 2013, “
Material vs. Discretization Length Scales in Plasticity Simulations of Solid Foams,” Rev. Adv. Mater. Sci.,
35(1), pp. 39–47.
Aifantis,
K. E.
,
Konstantinidis,
A.
, and
Forest,
S.
, 2010, “
Modeling Strain Localization Bands in Metal Foams,” J. Comput. Theor. Nanosci.,
7(2), pp. 360–366.
[CrossRef]
Mayeur,
J. R.
,
Beyerlein, I
. J.
,
Bronkhorst,
C. A.
, and
Mourad,
H. M.
, 2015, “
Incorporating Interface Affected Zones Into Crystal Plasticity,” Int. J. Plast.,
65, pp. 206–225.
[CrossRef]
Zhu,
L.
,
Qu,
S.
,
Guo,
X.
, and
Lu,
J.
, 2015, “
Analysis of the Twin Spacing and Grain Size Effects on Mechanical Properties in Hierarchically Nanotwinned Face-Centered Cubic Metals Based on a Mechanism-Based Plasticity Model,” J. Mech. Phys. Solids,
76, pp. 162–179.
[CrossRef]
Dao,
M.
,
Lu,
L.
,
Shen,
Y. F.
, and
Suresh,
S.
, 2006, “
Strength, Strain-Rate Sensitivity and Ductility of Copper With Nanoscale Twins,” Acta Mater.,
54(20), pp. 5421–5432.
[CrossRef]
Purohit,
Y.
,
Sun,
L.
,
Irving,
D. L.
,
Scattergood,
R. O.
, and
Brenner,
D. W.
, 2010, “
Computational Study of the Impurity Induced Reduction of Grain Boundary Energies in Nano- and Bi-Crystalline Al–Pb Alloys,” Mater. Sci. Eng. A,
527(7–8), pp. 1769–1775.
[CrossRef]
Murdoch,
H. A.
, and
Schuh,
C. A.
, 2013, “
Stability of Binary Nanocrystalline Alloys Against Grain Growth and Phase Separation,” Acta Mater.,
61(6), pp. 2121–2132.
[CrossRef]
Mishin,
Y.
,
Mehl,
M.
,
Papaconstantopoulos,
D.
,
Voter,
A.
, and
Kress,
J.
, 2001, “
Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations,” Phys. Rev. B,
63(22), p. 224106.
[CrossRef]
You,
Z.
,
Li,
X.
,
Gui,
L.
,
Lu,
Q.
,
Zhu,
T.
,
Gao,
H.
, and
Lu,
L.
, 2013, “
Plastic Anisotropy and Associated Deformation Mechanisms in Nanotwinned Metals,” Acta Mater.,
61(1), pp. 217–227.
[CrossRef]
Wei,
Y.
, 2011, “
Scaling of Maximum Strength With Grain Size in Nanotwinned FCC Metals,” Phys. Rev. B,
83(13), p. 132104.
Wei,
Y.
, 2011, “
The Kinetics and Energetics of Dislocation Mediated De-Twinning in Nano-Twinned Face-Centered Cubic Metals,” Mater. Sci. Eng. A,
528(3), pp. 1558–1566.
[CrossRef]
Lu,
K.
,
Lu,
L.
, and
Suresh,
S.
, 2009, “
Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale,” Science,
324(5925), pp. 349–352.
[CrossRef] [PubMed]
Asaro,
R. J.
, and
Suresh,
S.
, 2005, “
Mechanistic Models for the Activation Volume and Rate Sensitivity in Metals With Nanocrystalline Grains and Nano-Scale Twins,” Acta Mater.,
53(12), pp. 3369–3382.
[CrossRef]
Carsley,
J. E.
,
Ning,
J.
,
Milligan,
W. W.
,
Hackney,
S. A.
, and
Aifantis,
E. C.
, 1995, “
A Simple, Mixtures-Based Model for the Grain Size Dependence of Strength in Nanophase Metals,” Nanostruct. Mater.,
5(4), pp. 441–448.
[CrossRef]
Konstantinidis,
D. A.
, and
Aifantis,
E. C.
, 1998, “
On the ‘Anomalous' Hardness of Nanocrystalline Materials,” Nanostruct. Mater.,
10(7), pp. 1111–1118.
[CrossRef]
Kim,
H. S.
, and
Estrin,
Y.
, 2005, “
Phase Mixture Modeling of the Strain Rate Dependent Mechanical Behavior of Nanostructured Materials,” Acta Mater.,
53(3), pp. 765–772.
[CrossRef]
Aifantis,
E. C.
, 2011, “
Gradient Nanomechanics: Applications to Deformation, Fracture, and Diffusion in Nanopolycrystals,” Metall. Mater. Trans. A,
42(10), pp. 2985–2998.
[CrossRef]
Ovid'ko,
I.
, and
Aifantis,
E. C.
, 2013, “
Nanocrystals & Nanomechanics: Mechanisms & Models. A Selective Review,” Rev. Adv. Mater. Sci.,
35(1–2), pp. 1–24.