Newman,
K.
,
Kelleher,
P. E.
, and
Smalley,
Ed.
, 2014, “
Extended Reach: Can We Reach Further?” SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, TX, Mar. 25–26, SPE Paper No. 168235.

Castro,
L.
,
Craig,
S.
,
Micheli,
R.
, and
Livescu,
S.
, 2015, “
Overcoming Extended-Reach Challenges for Annular Fracturing,” SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, TX, Mar. 24–25, SPE Paper No. 173683.

Edillon,
L.
, 2013, “
Industry Trends Utilizing Larger Diameter Coiled Tubing for Extended Reach Operations in Northwestern Canada,” SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 30–Oct. 2, SPE Paper No. 166401.

Paslay,
P. R.
, and
Bogy,
D. B.
, 1964, “
The Stability of a Circular Rod Laterally Constrained to be in Contact With an Inclined Circular Cylinder,” ASME J. Appl. Mech.,
31(4), pp. 605–610.

[CrossRef]
van Adrichem,
W.
, and
Newman,
K.
, 1993, “
Validation of Coiled-Tubing Penetration Prediction in Horizontal Wells,” J. Pet. Technol.,
45(2), pp. 155–159.

[CrossRef]
Kuru,
E.
,
Martinez,
A.
,
Miska,
S.
, and
Qiu,
W.
, 2000, “
The Buckling Behavior of Pipes and Its Influence on the Axial Force Transfer in Directional Wells,” ASME J. Energy Resour. Technol.,
122(3), pp. 129–135.

[CrossRef]
Dawson,
R.
, and
Paslay,
P. R.
, 1984, “
Drill Pipe Buckling in Inclined Holes,” J. Pet. Technol.,
36(10), pp. 1734–1741.

[CrossRef]
Mitchell,
R. F.
, 1982, “
Buckling Behavior of Well Tubing: The Packer Effect,” Soc. Pet. Eng. J.,
22(5), pp. 616–624.

[CrossRef]
Chen,
Y.-C.
,
Lin,
Y.-H.
, and
Cheatham,
J. B.
, 1990, “
Tubing and Casing Buckling in Horizontal Wells,” J. Pet. Technol.,
42(2), pp. 140–141.

[CrossRef]
Wu,
J.
, and
Juvkam-Wold,
H. C.
, 1990, “
Discussion of Tubing and Casing Buckling in Horizontal Wells,” J. Pet. Technol.,
42, pp. 1062–1063.

Denoël,
V.
, and
Detournay,
E.
, 2011, “
Eulerian Formulation of Constrained Elastica,” Int. J. Solids Struct.,
48(3–4), pp. 625–636.

[CrossRef]
Tan,
X. C.
, and
Digby,
P. J.
, 1993, “
Buckling of Drill String Under the Action of Gravity and Axial Thrust,” Int. J. Solids Struct.,
30(19), pp. 2675–2691.

[CrossRef]
Fang,
J.
,
Li,
S. Y.
, and
Chen,
J. S.
, 2013, “
On a Compressed Spatial Elastica Constrained Inside a Tube,” Acta Mech.,
224(11), pp. 2635–2647.

[CrossRef]
Huang,
N. C.
, and
Pattillo,
P. D.
, 2000, “
Helical Buckling of a Tube in an Inclined Wellbore,” Int. J. Nonlinear Mech.,
35(5), pp. 911–923.

[CrossRef]
Sun,
C.
, and
Lukasiewicz,
S.
, 2006, “
A New Model on the Buckling of a Rod in Tubing,” J. Pet. Sci. Eng.,
50(1), pp. 78–82.

[CrossRef]
Van der Heijden,
G. H. M.
,
Champneys,
A. R.
, and
Thompson,
J. M. T.
, 2002, “
Spatially Complex Localisation in Twisted Elastic Rods Constrained to a Cylinder,” Int. J. Solids Struct.,
39(7), pp. 1863–1883.

[CrossRef]
Van der Heijden,
G. H. M.
, 2001, “
The Static Deformation of a Twisted Elastic Rod Constrained to Lie on a Cylinder,” Proc. R. Soc. A,
457(2007), pp. 695–715.

[CrossRef]
Wicks,
N.
,
Wardle,
B. L.
, and
Pafitis,
D.
, 2008, “
Horizontal Cylinder-in-Cylinder Buckling Under Compression and Torsion: Review and Application to Composite Drill Pipe,” Int. J. Mech. Sci.,
50(3), pp. 538–549.

[CrossRef]
Su,
T.
,
Wicks,
N.
,
Pabon,
J.
, and
Bertoldi,
K.
, 2013, “
Mechanism by Which a Frictionally Confined Rod Loses Stability Under Initial Velocity and Position Perturbations,” Int. J. Solids Struct.,
50(14–15), pp. 2468–2476.

[CrossRef]
Miller,
J. T.
,
Su,
T.
,
Pabon,
J.
,
Wicks,
N.
,
Bertoldi,
K.
, and
Reis,
P. M.
, 2015, “
Buckling of a Thin Rod Inside a Horizontal Cylindrical Constraint,” Extreme Mech. Lett.,
3, pp. 36–44.

[CrossRef]
McCourt,
I.
, and
Kubie,
J.
, 2005, “
Limits on the Penetration of Coiled Tubing in Horizontal Oil Wells: Effect of the Pipe Geometry,” Proc. Inst. Mech. Eng., Part C.,
219(11), pp. 1191–1197.

[CrossRef]
Zheng,
A.
, and
Sarmad,
A.
, 2005, “
The Penetration of Coiled Tubing With Residual Bend in Extended-Reach Wells,” SPE Annual Technical Conference and Exhibition,
Dallas,
TX, Oct. 9–12, SPE Paper No. 95239, pp. 220–225.

Bhalla,
K.
, 1995, “
Coiled Tubing Extended Reach Technology,” Offshore Europe Conference,
Aberdeen,
UK, Sept. 5–8, SPE Paper No. 30404, pp. 392–405.

Al Shehri,
A.
,
Al-Driweesh,
S.
,
Al Omari,
M.
, and
Al Sarakbi,
S.
, 2007, “
Case History: Application of Coiled Tubing Tractor to Acid Stimulate Open Hole Extended Reach Power Water Injector Well,” SPE Asia Pacific Oil and Gas Conference,
Jakarta,
Indonesia, Oct. 30–Nov. 1, SPE Paper No. 110382, pp. 989–996.

Al-Buali,
M. H.
,
Dashash,
A. A.
,
Shawly,
A. S.
,
Al-Guraini,
W. K.
,
Al-Driweesh,
S. M.
,
Bugrov,
V.
, and
Nicoll,
S.
, 2009, “
Maximizing Coiled Tubing Reach During Logging of Extended Horizontal Wells Using E-line Agitator,” Kuwait, International Petroleum Conference and Exhibition,
Kuwait City,
Kuwait, Dec. 14–16, SPE Paper No. 127399, pp. 324–334.

Wicks,
N.
,
Pabon,
J.
, and
Zheng,
A.
, 2014, “
Modeling and Field Trials of the Effective Tractoring Force of Axial Vibration Tools,” Galveston, TX, Sept. 10–11, SPE Paper No. 170327.

McLachlan,
N. W.
, 1951, Theory and Applications of Mathieu Functions,
Oxford Press,
London.

Markevich,
N. I.
, and
Sel’kov,
E. E.
, 1989, “
Parametric Resonance and Amplification in Excitable Membranes. The Hodgkin–Huxley Model,” J. Theor. Biol.,
140(1), pp. 27–38.

[CrossRef] [PubMed]
Huseyin,
K.
, and
Lin,
R.
, 1991, “
An Intrinsic Multiple-Time-Scale Harmonic Balance Method for Nonlinear Vibration and Bifurcation Problems,” Int. J. Nonlinear Mech.,
26(5), pp. 727–740.

[CrossRef]
Mettler,
E.
, 2014, “
Stability and Vibration Problems of Mechanical Systems Under Harmonic Excitation,” Dynamic Stability of Structures, Pergamon Press, New York, pp. 169–188.

Stephenson,
A.
, 1908, “
On a New Type of Dynamic Stability,” Mem. Proc. Manchester Lit. Philos. Soc.,
52(8), pp. 1–10.

Stephenson,
A.
, 1908, “
On Induced Stability,” Philos. Mag.,
15(86), pp. 233–236.

[CrossRef]
Mathieu,
E.
, 1868, “
Mémoire sur le Mouvement Vibratoire d’une Membrane de Forme Elliptique,” J. Math. Pures Appl.,
13, pp. 137–203.

Arscott,
F. M.
, 1964, Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions,
The MacMillan Company,
New York.

McLachlan,
N. W.
, 1947, Theory and Application of Mathieu Functions,
Clarendon Press,
Oxford, UK.

Birdsall,
C. K.
, and
Langdon,
A. B.
, 1985, Plasma Physics Via Computer Simulations,
McGraw-Hill, New York.

Timoshenko,
S. P.
, and
Gere,
J. M.
, 1961, Theory of Elastic Stability, 2nd ed.,
McGraw-Hill Book, New York.

Pabon,
J.
,
Wicks,
N.
,
Chang,
Y.
,
Dow,
B.
, and
Harmer,
R.
, 2009, “
Modeling Transient Vibrations While Drilling Using a Finite Rigid Body Approach,” First International Colloquium on Nonlinear Dynamics of Deep Drilling Systems, Galveston, TX, Oct. 5–6, SPE Paper No. 137754, pp. 83–87.

Budyans,
R.
, and
Young,
W.
, 2001, Roarkś Formulas for Stress & Strain, 7th ed.,
McGraw-Hill, New York.

Antman,
S. S.
, 1995, Nonlinear Problems of Elasticity,
Springer, Berlin.

Coleman,
B. D.
,
Dill,
E. H.
,
Lembo,
M.
,
Lu,
Z.
, and
Tobias,
I.
, 1993, “
On the Dynamics of Rods in the Theory of Kirchhoff and Clebsch,” Arch. Rational Mech. Anal.,
121(4), pp. 339–359.

[CrossRef]
Hill,
G. W.
, 1886, “
On the Part of the Motion of the Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon,” Acta. Math.,
8(1), pp. 1–36.

[CrossRef]
Lee,
T. C.
, 1976, “
A Study of Coupled Mathieu Equations by Use of Infinite Determinants,” ASME J. Appl. Mech.,
43(2), pp. 349–352.

[CrossRef]
Zounes,
R. S.
, and
Rand,
R. H.
, 1998, “
Transition Curves for the Quasi-Periodic Mathieu Equation,” SIAM J. Appl. Math.,
58(4), pp. 1094–1115.

[CrossRef]
Simakhina,
S.
, 2003, “
Stability Analysis of Hill’s Equation,” Master thesis,
University of Illinois at Chicago,
Chicago, IL.

Ruby,
L.
, 1995, “
Applications of the Mathieu Equation,” Am. J. Phys.,
64(1), pp. 39–44.

[CrossRef]