DiMaggio,
F. L.
, and
Sandler,
I. S.
, 1971, “
Material Model for Granular Soils,” J. Eng. Mech. Div.,
97(3), pp. 935–950.

Finn,
W. L.
,
Lee,
K. W.
, and
Martin,
G.
, 1977, “
An Effective Stress Model for Liquefaction,” Electron. Lett.,
103, pp. 517–533.

Prevost,
J. H.
, 1985, “
A Simple Plasticity Theory for Frictional Cohesionless Soils,” Int. J. Soil Dyn. Earthquake Eng.,
4(1), pp. 9–17.

[CrossRef]
Bardet,
J.
, 1986, “
Bounding Surface Plasticity Model for Sands,” J. Eng. Mech.,
112(11), pp. 1198–1217.

[CrossRef]
Anandarajah,
A.
, 1993, “
VELACS Project: Elasto-Plastic Finite Element Prediction of the Liquefaction Behavior of Centrifuge Models Nos. 1, 3 and 4a,” International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Balkema, Rotterdam, The Netherlands.

Oka,
F.
,
Adachi,
T.
, and
Yashima,
A.
, 1995, “
A Strain Localization Analysis Using a Viscoplastic Softening Model for Clay,” Int. J. Plast.,
11(5), pp. 523–545.

[CrossRef]
Borja,
R. I.
,
Chao,
H.
,
Montáns,
F.
, and
Lin,
C.
, 1999, “
Nonlinear Ground Response at Lotung LSST Site,” J. Geotech. Geoenviron. Eng.,
125(3), pp. 187–197.

[CrossRef]
Jeremic,
B.
,
Runesson,
K.
, and
Sture,
S.
, 1999, “
A Model for Elastic-Plastic Pressure Sensitive Materials Subjected to Large Deformations,” Int. J. Solids Struct.,
36(31), pp. 4901–4918.

[CrossRef]
Nemat-Nasser,
S.
, and
Zhang,
J.
, 2002, “
Constitutive Relations for Cohesionless Frictional Granular Materials,” Int. J. Plast.,
18(4), pp. 531–547.

[CrossRef]
Lashkari,
A.
, and
Latifi,
M.
, 2008, “
A Non‐Coaxial Constitutive Model for Sand Deformation Under Rotation of Principal Stress Axes,” Int. J. Numer. Anal. Methods Geomech.,
32(9), pp. 1051–1086.

[CrossRef]
Yang,
Z.
, and
Elgamal,
A.
, 2008, “
Multi-Surface Cyclic Plasticity Sand Model With Lode Angle Effect,” Geotech. Geol. Eng.,
26(3), pp. 335–348.

[CrossRef]
Andrade,
J. E.
, and
Ellison,
K. C.
, 2008, “
Evaluation of a Predictive Constitutive Model for Sands,” J. Geotech. Geoenviron. Eng.,
134(12), pp. 1825–1828.

[CrossRef]
Li,
L.
,
Aubertin,
M.
, and
Shirazi,
A.
, 2010, “
Implementation and Application of a New Elastoplastic Model Based on a Multiaxial Criterion to Assess the Stress State Near Underground Openings,” Int. J. Geomech.,
10(1), pp. 13–21.

[CrossRef]
Roscoe,
K. H.
,
Schofield,
A.
, and
Wroth,
C.
, 1958, “
On the Yielding of Soils,” Geotechnique,
18(1), pp. 22–53.

[CrossRef]
Schofield,
A.
, and
Wroth,
P.
, 1968, Critical State Soil Mechanics,
McGraw-Hill,
London.

Roscoe,
K. H.
, and
Burland,
J.
, 1968, On The Generalized Stress-Strain Behaviour of Wet Clay,
Cambridge University Press,
London.

Nova,
R.
, and
Wood,
D. M.
, 1979, “
A Constitutive Model for Sand in Triaxial Compression,” Int. J. Numer. Anal. Methods Geomech.,
3(3), pp. 255–278.

[CrossRef]
Manzari,
M. T.
, and
Dafalias,
Y. F.
, 1997, “
A Critical State Two-Surface Plasticity Model for Sands,” Geotechnique,
47(2), pp. 255–272.

[CrossRef]
Jefferies,
M.
, 1993, “
Nor-Sand: A Simple Critical State Model for Sand,” Géotechnique,
43(1), pp. 91–103.

[CrossRef]
Borja,
R. I.
, and
Lee,
S. R.
, 1990, “
Cam-Clay Plasticity, Part 1: Implicit Integration of Elasto-Plastic Constitutive Relations,” Comput. Methods Appl. Mech. Eng.,
78(1), pp. 49–72.

[CrossRef]
Borja,
R. I.
, and
Andrade,
J. E.
, 2006, “
Critical State Plasticity. Part VI: Meso-Scale Finite Element Simulation of Strain Localization in Discrete Granular Materials,” Comput. Methods Appl. Mech. Eng.,
195(37), pp. 5115–5140.

[CrossRef]
Gao,
Z.
,
Zhao,
J.
,
Li,
X.-S.
, and
Dafalias,
Y. F.
, 2014, “
A Critical State Sand Plasticity Model Accounting for Fabric Evolution,” Int. J. Numer. Anal. Methods Geomech.,
38(4), pp. 370–390.

[CrossRef]
Tanaka,
M.
, and
Dulikravich,
G. S.
, 1998, Inverse Problems in Engineering Mechanics,
Elsevier,
Amsterdam.

Chaparro,
B. M.
,
Thuillier,
S.
,
Menezes,
L. F.
,
Manach,
P. Y.
, and
Fernandes,
J. V.
, 2008, “
Material Parameters Identification: Gradient-Based, Genetic and Hybrid Optimization Algorithms,” Comput. Mater. Sci.,
44(2), pp. 339–346.

[CrossRef]
Yang,
Z.
, and
Elgamal,
A.
, 2003, “
Application of Unconstrained Optimization and Sensitivity Analysis to Calibration of a Soil Constitutive Model,” Int. J. Numer. Anal. Methods Geomech.,
27(15), pp. 1277–1297.

[CrossRef]
Blaheta,
R.
,
Hrtus,
R.
,
Kohut,
R.
,
Axelsson,
O.
, and
Jakl,
O.
, 2012, “
Material Parameter Identification With Parallel Processing and Geo-Applications,” Parallel Processing and Applied Mathematics,
Springer,
Berlin, Heidelberg, pp. 366–375.

Feng,
X.-T.
,
Chen,
B.-R.
,
Yang,
C.
,
Zhou,
H.
, and
Ding,
X.
, 2006, “
Identification of Visco-Elastic Models for Rocks Using Genetic Programming Coupled With the Modified Particle Swarm Optimization Algorithm,” Int. J. Rock Mech. Min. Sci.,
43(5), pp. 789–801.

[CrossRef]
Ghaboussi,
J.
,
Pecknold,
D. A.
,
Zhang,
M.
, and
Haj-Ali,
R. M.
, 1998, “
Autoprogressive Training of Neural Network Constitutive Models,” Int. J. Numer. Methods Eng.,
42(1), pp. 105–126.

[CrossRef]
Li,
X.
, 2005, “
Calibration of an Anisotropic Sand Model,” Calibration of Constitutive Models,
ASCE, pp. 1–12.

Dafalias,
Y. F.
, and
Manzari,
M. T.
, 2004, “
Simple Plasticity Sand Model Accounting for Fabric Change Effects,” J. Eng. Mech.,
130(6), pp. 622–634.

[CrossRef]
Papadimitriou,
A. G.
, and
Bouckovalas,
G. D.
, 2002, “
Plasticity Model for Sand Under Small and Large Cyclic Strains: A Multiaxial Formulation,” Soil Dyn. Earthquake Eng.,
22(3), pp. 191–204.

[CrossRef]
Shahir,
H.
,
Pak,
A.
,
Taiebat,
M.
, and
Jeremic,
B.
, 2012, “
Evaluation of Variation of Permeability in Liquefiable Soil Under Earthquake Loading,” Comput. Geotech.,
40, pp. 74–88.

[CrossRef]
Choi,
C.
,
Arduino,
P.
, and
Harney,
M. D.
, 2005, “
Two-Surface Soil Constitutive Model Calibration for Coarse Granular Materials,” *Calibration of Constitutive Models*, *ASCE*, pp. 1–15.

Mahnken,
R.
, and
Stein,
E.
, 1994, “
The Identification of Parameters for Visco-Plastic Models Via Finite-Element Methods and Gradient Methods,” Modell. Simul. Mater. Sci. Eng.,
2(3A), pp. 597–616.

[CrossRef]
Mahnken,
R.
, and
Stein,
E.
, 1996, “
A Unified Approach for Parameter Identification of Inelastic Material Models in the Frame of the Finite Element Method,” Comput. Methods Appl. Mech. Eng.,
136(3), pp. 225–258.

[CrossRef]
Rechenmacher,
A. L.
, and
Medina-Cetina,
Z.
, 2007, “
Calibration of Soil Constitutive Models With Spatially Varying Parameters,” J. Geotech. Geoenviron. Eng.,
133(12), pp. 1567–1576.

[CrossRef]
Arnold,
S. M.
,
Holland,
F.
, and
Bednarcyk,
B. A.
, 2014, “
Robust Informatics Infrastructure Required for ICME: Combining Virtual and Experimental Data,” 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference.

Broderick,
S. R.
,
Aourag,
H.
, and
Rajan,
K.
, 2011, “
Data Mining of Ti–Al Semi-Empirical Parameters for Developing Reduced Order Models,” Phys. B,
406(11), pp. 2055–2060.

[CrossRef]
Feng,
X. T.
, and
Yang,
C.
, 2004, “
Coupling Recognition of the Structure and Parameters of Non‐Linear Constitutive Material Models Using Hybrid Evolutionary Algorithms,” Int. J. Numer. Methods Eng.,
59(9), pp. 1227–1250.

[CrossRef]
Alexandrov,
N. M.
,
Lewis,
R. M.
,
Gumbert,
C. R.
,
Green,
L. L.
, and
Newman,
P. A.
, 1999, “
Optimization With Variable-Fidelity Models Applied to Wing Design,” AIAA Paper No. 2000-0841.

Alexandrov,
N. M.
,
Dennis,
J. E., Jr.
,
Lewis,
R. M.
, and
Torczon,
V.
, 1998, “
A Trust-Region Framework for Managing the Use of Approximation Models in Optimization,” Struct. Optim.,
15(1), pp. 16–23.

[CrossRef]
Cundall,
P. A.
, and
Strack,
O. D.
, 1979, “
A Discrete Numerical Model for Granular Assemblies,” Geotechnique,
29(1), pp. 47–65.

[CrossRef]
Sun,
W.
,
Kuhn,
M. R.
, and
Rudnicki,
J. W.
, 2013, “
A Multiscale DEM-LBM Analysis on Permeability Evolutions Inside a Dilatant Shear Band,” Acta Geotech.,
8(5), pp. 465–480.

[CrossRef]
Jäger,
J.
, 1999, “
Uniaxial Deformation of a Random Packing of Particles,” Arch. Appl. Mech.,
69(3), pp. 181–203.

[CrossRef]
Jaeger,
J.
, 2005, New Solutions in Contact Mechanics,
WIT Press/Computational Mechanics,
Southampton, MA.

Kuhn,
M. R.
, 2011, “
Implementation of the Jäger Contact Model for Discrete Element Simulations,” Int. J. Numer. Methods Eng.,
88(1), pp. 66–82.

[CrossRef]
Liu,
Y.
,
Sun,
W.
,
Yuan,
Z.
, and
Fish,
J.
, 2015, “
A Nonlocal Multiscale Discrete-Continuum Model for Predicting Mechanical Behavior of Granular Materials,” Int. J. Numer. Methods Eng. (submitted).

Christoffersen,
J.
,
Mehrabadi,
M.
, and
Nemat-Nasser,
S.
, 1981, “
A Micromechanical Description of Granular Material Behavior,” ASME J. Appl. Mech.,
48(2), pp. 339–344.

[CrossRef]
Satake,
M.
, 1978, “
Constitution of Mechanics of Granular Materials Through the Graph Theory,” Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials,
Gakuzutsu Bunken Fukyukai,
Tokyo, pp. 47–62.

Pastor,
M.
,
Zienkiewicz,
O.
, and
Chan,
A.
, 1990, “
Generalized Plasticity and the Modelling of Soil Behaviour,” Int. J. Numer. Anal. Methods Geomech.,
14(3), pp. 151–190.

[CrossRef]
Pestana,
J. M.
, and
Whittle,
A.
, 1995, “
Compression Model for Cohesionless Soils,” Géotechnique,
45(4), pp. 611–631.

[CrossRef]
Ling,
H. I.
, and
Yang,
S.
, 2006, “
Unified Sand Model Based on the Critical State and Generalized Plasticity,” J. Eng. Mech.,
132(12), pp. 1380–1391.

[CrossRef]
Jefferies,
M.
, and
Been,
K.
, 2000, “
Implications for Critical State Theory From Isotropic Compression of Sand,” Géotechnique,
50(4), pp. 419–429.

[CrossRef]
Wood,
D. M.
, 1990, Soil Behaviour and Critical State Soil Mechanics,
Cambridge University,
New York.

Li,
X.-S.
, and
Wang,
Y.
, 1998, “
Linear Representation of Steady-State Line for Sand,” J. Geotech. Geoenviron. Eng.,
124(12), pp. 1215–1217.

[CrossRef]
Been,
K.
, and
Jefferies,
M. G.
, 1985, “
A State Parameter for Sands,” Géotechnique,
35(2), pp. 99–112.

[CrossRef]
Nazzal,
M. D.
,
Abu-Farsakh,
M. Y.
, and
Mohammad,
L. N.
, 2010, “
Implementation of a Critical State Two-Surface Model to Evaluate the Response of Geosynthetic Reinforced Pavements,” Int. J. Geomech.,
10(5), pp. 202–212.

[CrossRef]
Andrade,
J. E.
,
Ramos,
A. M.
, and
Lizcano,
A.
, 2013, “
Criterion for Flow Liquefaction Instability,” Acta Geotech.,
8(5), pp. 525–535.

[CrossRef]
Conn,
A. R.
,
Gould,
N. I.
, and
Toint,
P. L.
, 2000, Trust Region Methods, MPS/SIAM Series on Optimization,
SIAM,
Philadelphia, PA.

Marquardt,
D. W.
, 1963, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math.,
11(2), pp. 431–441.

[CrossRef]
Fish,
J.
, 2013, Practical Multiscaling,
Wiley,
New York.

Arulmoli,
K.
, 1992, Velacs Verification of Liquefaction Analyses by Centrifuge Studies Laboratory Testing Program: Soil Data Report,
Earth Technology Corporation,
Irvine, CA.

Kammerer, A. M.
,
Wu, J.
,
Pestana, J. M.
,
Riemer, M.
, and
Seed, R. B.
, 2000, “
Cyclic Simple Shear Testing of Nevada Sand for PEER Center Project 2051999,” Dept. of Civil and Environmental Engineering, Univ. of California, Berkley, CA, Geotechnical Engineering Rep. No. UCB/GT/00- 01.

Viggiani,
G.
,
Andò,
E.
,
Takano,
D.
, and
Santamarina,
J. C.
, 2015, “
Laboratory X-Ray Tomography: A Valuable Experimental Tool for Revealing Processes in Soils,” Geotech. Test. J.,
38(1), pp. 61–71.

Charalampidou,
E.-M.
,
Hall,
S. A.
,
Stanchits,
S.
,
Lewis,
H.
, and
Viggiaini,
G.
, 2011, “
Characterization of Shear and Compaction Bands in a Porous Sandstone Deformed Under Triaxial Compression,” Tectonophysics,
503(1), pp. 8–17.

[CrossRef]
Sun,
W.
,
Andrade,
J. E.
,
Rudnicki,
J. W.
, and
Eichhubl,
P.
, 2011, “
Connecting Microstructural Attributes and Permeability From 3D Tomographic Images of In Situ Shear‐Enhanced Compaction Bands Using Multiscale Computations,” Geophys. Res. Lett.,
38(10), p. L10302.

Sun,
W.
,
Andrade,
J. E.
, and
Rudnicki,
J. W.
, 2011, “
Multiscale Method for Characterization of Porous Microstructures and Their Impact on Macroscopic Effective Permeability,” Int. J. Numer. Methods Eng.,
88(12), pp. 1260–1279.

[CrossRef]
Boon,
C.
,
Houlsby,
G.
, and
Utili,
S.
, 2012, “
A New Algorithm for Contact Detection Between Convex Polygonal and Polyhedral Particles in the Discrete Element Method,” Comput. Geotech.,
44, pp. 73–82.

[CrossRef]
Lim,
K. W.
, and
Andrade,
J. E.
, 2014, “
Granular Element Method for Three‐Dimensional Discrete Element Calculations,” Int. J. Numer. Anal. Methods Geomech.,
38(2), pp. 167–188.

[CrossRef]
Kuhn,
M. R.
,
Renken,
H.
,
Mixsell,
A.
, and
Kramer,
S.
, 2014, “
Investigation of Cyclic Liquefaction With Discrete Element Simulations,” J. Geotech. Geoenviron. Eng.,
140(12), p. 04014075.

[CrossRef]
Salot,
C.
,
Gotteland,
P.
, and
Villard,
P.
, 2009, “
Influence of Relative Density on Granular Materials Behavior: DEM Simulations of Triaxial Tests,” Granular Matter,
11(4), pp. 221–236.

[CrossRef]
Hardin,
B. O.
, 1985, “
Crushing of Soil Particles,” J. Geotech. Eng.,
111(10), pp. 1177–1192.

[CrossRef]
Cheng,
Y.
,
Bolton,
M.
, and
Nakata,
Y.
, 2004, “
Crushing and Plastic Deformation of Soils Simulated Using DEM,” Geotechnique,
54(2), pp. 131–141.

[CrossRef]
Lade,
P. V.
,
Yamamuro,
J. A.
, and
Bopp,
P. A.
, 1996, “
Significance of Particle Crushing in Granular Materials,” J. Geotech. Eng.,
122(4), pp. 309–316.

[CrossRef]ASTMD4253, 2006, “
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table,” ASTM International, West Conshohocken, PA.

ASTMD4254, 2006, “
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density,” ASTM International, West Conshohocken, PA.

Hardin,
B. O.
, 1978, “
The Nature of Stress-Strain Behavior for Soils,” Earthquake Engineering and Soil Dynamics—ASCE Geotechnical Engineering Division Specialty Conference, Pasadena, CA, Jun. 19–21.

Wichtmann,
T.
, and
Triantafyllidis,
T.
, 2009, “
Influence of the Grain-Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus G

_{max},” J. Geotech. Geoenviron. Eng.,
135(10), pp. 1404–1418.

[CrossRef]
Cho,
G.-C.
,
Dodds,
J.
, and
Santamarina,
J. C.
, 2006, “
Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands,” J. Geotech. Geoenviron. Eng.,
132(5), pp. 591–602.

[CrossRef]
Lade,
P. V.
, 2008, “
Failure Criterion for Cross-Anisotropic Soils,” J. Geotech. Geoenviron. Eng.,
134(1), pp. 117–124.

[CrossRef]
Barreto,
D.
, and
O'Sullivan,
C.
, 2012, “
The Influence of Inter-Particle Friction and the Intermediate Stress Ratio on Soil Response Under Generalised Stress Conditions,” Granular Matter,
14(4), pp. 505–521.

[CrossRef]
Yamamuro,
J. A.
, and
Covert,
K. M.
, 2001, “
Monotonic and Cyclic Liquefaction of Very Loose Sands With High Silt Content,” J. Geotech. Geoenviron. Eng.,
127(4), pp. 314–324.

[CrossRef]
Kutter,
B. L.
,
Chen,
Y.-R.
, and
Shen,
C.
, 1994, “
Triaxial and Torsional Shear Test Results for Sand,” Naval Facilities Engineering Service Center. Port Hueneme, CA, Contract Report CR 94.003-SHR.

Andrade,
J. E.
,
Lim,
K.-W.
,
Avila,
C. F.
, and
Vlahinic,
I.
, 2012, “
Granular Element Method for Computational Particle Mechanics,” Comput. Methods Appl. Mech. Eng.,
241–244, pp. 262–274.

[CrossRef]