0
Research Papers

Effects of Surface Stress on the Phonon Properties in GaN Nanofilms

[+] Author and Article Information
Haonan Luo

Department of Engineering Mechanics,
School of Aeronautics and Astronautics,
Zhejiang University,
Hangzhou, Zhejiang 310027, China

Linli Zhu

Department of Engineering Mechanics,
School of Aeronautics and Astronautics,
Zhejiang University,
Hangzhou, Zhejiang 310027, China
e-mail: llzhu@zju.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received May 11, 2015; final manuscript received July 23, 2015; published online August 10, 2015. Assoc. Editor: Daining Fang.

J. Appl. Mech 82(11), 111002 (Aug 10, 2015) (7 pages) Paper No: JAM-15-1239; doi: 10.1115/1.4031150 History: Received May 11, 2015

This work investigates the phonon properties such as phonon dispersion relation, average group velocity, and phonon density of state (DOS) theoretically in GaN nanofilm under various surface stress fields. By taking into account of the surface energy effects, the elasticity theory is presented to describe the confined phonons of nanofilms with different surface stresses. The calculation results show that the influence of surface stress on the phonon properties depends on the thickness of nanofilm. The negative surface stress leads to a higher average group velocity and corresponding lower phonon DOS. The positive surface stress has the opposite effect. The significant modification of thermal properties, e.g., phonon thermal conductivity, in GaN nanofilms is mostly stemmed from the change of phonon average group velocity and DOS by surface stress. These results suggest that the thermal or electrical properties in GaN nanofilms could be enhanced or reduced by tuning the surface stress acting on the films.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Balandin, A. A. , Pokatilov, E. P. , and Nika, D. , 2007, “Phonon Engineering in Hetero- and Nanostructures,” J. Nanoelectron. Optoelectron., 2(2), pp. 140–170. [CrossRef]
Tian, Z. , Lee, S. , and Chen, G. , 2013, “Heat Transfer in Thermoelectric Materials and Devices,” ASME J. Heat Transfer, 135(6), p. 061605. [CrossRef]
Beek, J. T. M. , and Puers, R. , 2011, “A Review of MEMS Oscillators for Frequency Reference and Timing Applications,” J. Micromech. Microeng., 22(1), pp. 1–35 .
Huang, Y. , Duan, X. , Cui, Y. , and Lieber, C. M. , 2002, “Gallium Nitride Nanowire Nanodevices,” Nano Lett., 2(2), pp. 101–104. [CrossRef]
Goldberger, J. , He, R. , Zhang, Y. , Lee, S. , Yan, H. , Choi, H. J. , and Yang, P. , 2003, “ Single-Crystal Gallium Nitride Nanotubes,” Nature, 422(6932), pp. 599–602. [CrossRef] [PubMed]
Gradečak, S. , Qian, F. , Li, Y. , Park, H.-G. , and Lieber, C. M. , 2005, “GaN Nanowire Lasers With Low Lasing Thresholds,” Appl. Phys. Lett., 87(17), p. 173111. [CrossRef]
Mohammad, S. N. , Salvador, A. A. , and Morkoc, H. , 1995, “Emerging Gallium Nitride Based Devices,” Proc. IEEE, 83(10), pp. 1306–1355. [CrossRef]
Chung, K. , Lee, C.-H. , and Yi, G.-C. , 2010, “Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices,” Science, 330(6004), pp. 655–657. [CrossRef] [PubMed]
Eichenfield, M. , Chan, J. , Camacho, R. M. , Vahala, K. J. , and Painter, O. , 2009, “Optomechanical Crystals,” Nature, 462(7269), pp. 78–82. [CrossRef] [PubMed]
Baliga, B. J. , 2013, “Gallium Nitride Devices for Power Electronic Applications,” Semicond. Sci. Technol., 28(7), p. 074011. [CrossRef]
Xing, H. , 2010, “Performance Evaluation of Silicon and Gallium Nitride Power FETs for DC/DC Power Converter Applications,” IEEE National Aerospace and Electronics Conference (NAECON), Fairborn, OH, July 14–16, pp. 317–321 .
BabiÄ, D. I. , 2013, “Thermal Analysis of AlGaN/GaN HEMTs Using Angular Fourier-Series Expansion,” ASME J. Heat Transfer, 135(11), p. 111001 . [CrossRef]
Kuykendall, T. , Pauzauskie, P. J. , Zhang, Y. , Goldberger, J. , Sirbuly, D. , Denlinger, J. , and Yang, P. , 2004, “Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays,” Nat. Mater., 3(8), pp. 524–528. [CrossRef] [PubMed]
Liu, B. , Bando, Y. , Tang, C. , Xu, F. , and Golberg, D. , 2005, “ Quasi-Aligned Single-Crystalline GaN Nanowire Arrays,” Appl. Phys. Lett., 87(7), p. 073106. [CrossRef]
Zou, J. , and Balandin, A. , 2001, “Phonon Heat Conduction in a Semiconductor Nanowire,” J. Appl. Phys., 89(5), pp. 2932–2938. [CrossRef]
Pokatilov, E. P. , Nika, D. L. , and Balandin, A. A. , 2005, “ Acoustic-Phonon Propagation in Rectangular Semiconductor Nanowires With Elastically Dissimilar Barriers,” Phys. Rev. B, 72(11), p. 113311. [CrossRef]
Balandin, A. A. , 2005, “Nanophononics: Phonon Engineering in Nanostructures and Nanodevices,” J. Nanosci. Nanotechnol., 5(7), pp. 1015–1022. [CrossRef] [PubMed]
Cuffe, J. , Chávez, E. , Shchepetov, A. , Chapuis, P.-O. , El Boudouti, E. H. , Alzina, F. , Kehoe, T. , Gomis-Bresco, J. , Dudek, D. , Pennec, Y. , Djafari-Rouhani, B. , Prunnila, M. , Ahopelto, J. , and Sotomayor Torres, C. M. , 2012, “Phonons in Slow Motion: Dispersion Relations in Ultrathin Si Membranes,” Nano Lett., 12(7), pp. 3569–3573. [CrossRef] [PubMed]
Cuffe, J. , Ristow, O. , Chávez, E. , Shchepetov, A. , Chapuis, P.-O. , Alzina, F. , Hettich, M. , Prunnila, M. , Ahopelto, J. , Dekorsy, T. , and Sotomayor Torres, C. M. , 2013, “Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes,” Phys. Rev. Lett., 110(9), p. 095503. [CrossRef] [PubMed]
Maldovan, M. , 2013, “Sound and Heat Revolutions in Phononics,” Nature, 503(7475), pp. 209–217. [CrossRef] [PubMed]
Guo, Y. F. , and Fang, D. N. , 2014, “Formation of Bending-Wave Band Structures in Bicoupled Beam-Type Phononic Crystals,” ASME J. Appl. Mech., 81(1), p. 011009 . [CrossRef]
Bian, Z. G. , Peng, W. , and Song, J. Z. , 2014, “Thermal Tuning of Band Structures in a One-Dimensional Phononic Crystal,” ASME J. Appl. Mech., 81(4), p. 041008 . [CrossRef]
Liu, C. C. , Hu, S. L. , and Shen, S. P. , 2014, “Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals,” ASME J. Appl. Mech., 81(5), p. 051007 . [CrossRef]
Osetrov, A. V. , Fröhlich, H.-J. , Koch, R. , and Chilla, E. , 2000, “Acoustoelastic Effect in Anisotropic Layered Structures,” Phys. Rev. B, 62(21), pp. 13963–13969. [CrossRef]
Zhu, L. L. , and Zheng, X. J. , 2009, “Modification of the Phonon Thermal Conductivity in Spatially Confined Semiconductor Nanofilms Under Stress Fields,” EPL, 88(3), p. 36003. [CrossRef]
Li, X. , Maute, K. , Dunn, M. L. , and Yang, R. , 2010, “Strain Effects on the Thermal Conductivity of Nanostructures,” Phys. Rev. B, 81(24), p. 245318. [CrossRef]
Shchepetov, A. , Prunnila, M. , Alzina, F. , Schneider, L. , Cuffe, J. , Jiang, H. , Kauppinen, E. I. , Sotomayor Torres, C. M. , and Ahopelto, J. , 2013, “ Ultra-Thin Free-Standing Single Crystalline Silicon Membranes With Strain Control,” Appl. Phys. Lett., 102(19), p. 192108. [CrossRef]
Graczykowski, B. , Gomis-Bresco, J. , Alzina, F. , Reparaz, J. S. , Shchepetov, A. , Prunnila, M. , Ahopelto, J. , and Sotomayor Torres, C. M. , 2014, “Acoustic Phonon Propagation in Ultra-Thin Si Membranes Under Biaxial Stress Field,” New J. Phys., 16(7), p. 073024. [CrossRef]
Dingreville, R. , Qu, J. M. , and Cherkaoui, M. , 2005, “Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films,” J. Mech. Phys. Solids, 53(8), pp. 1827–1854. [CrossRef]
Bernal, R. A. , Agrawal, R. , Peng, B. , Bertness, K. A. , Sanford, N. A. , Davydov, A. V. , and Espinosa, H. D. , 2010, “Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined In Situ TEM and Atomistic Modeling Investigation,” Nano Lett., 11(2), pp. 548–555 . [CrossRef] [PubMed]
Juvé, V. , Crut, A. , Maioli, P. , Pellarin, M. , Broyer, M. , Del Fatti, N. , and Vallée, F. , 2010, “Probing Elasticity at the Nanoscale: Terahertz Acoustic Vibration of Small Metal Nanoparticles,” Nano Lett., 10(5), pp. 1853–1858. [CrossRef] [PubMed]
Dingreville, R. , and Qu, J. M. , 2007, “A Semi-Analytical Method to Compute Surface Elastic Properties,” Acta Mater., 55(1), pp. 141–147. [CrossRef]
Wei, Y. , and Chen, B. , 2015, “Investigation of the Surface Elasticity of GaN by Atomistic Simulation and Its Application to the Elastic Relaxation of GaN Nanoisland,” Mater. Lett., 141, pp. 245–247 . [CrossRef]
Zou, J. , Lange, X. , and Richardson, C. , 2006, “Lattice Thermal Conductivity of Nanoscale AlN/GaN/AlN Heterostructures: Effects of Partial Phonon Spatial Confinement,” J. Appl. Phys., 100(10), p. 104309. [CrossRef]
Sichel, E. K. , and Pankove, J. I. , 1977, “Thermal Conductivity of GaN, 25–360 K,” J. Phys. Chem. Solids, 38(3), p. 330. [CrossRef]
Łepkowski, S. P. , Majewski, J. A. , and Jurczak, G. , 2005, “Nonlinear Elasticity in III-N Compounds: AB Initio Calculations,” Phys. Rev. B, 72(24), p. 245201. [CrossRef]
Łepkowski, S. P. , and Gorczyca, I. , 2011, “AB Initio Study of Elastic Constants in InxGa1-xN and InxAl1-xN Wurtzite Alloys,” Phys. Rev. B, 83(23), p. 203201. [CrossRef]
Zhu, L. L. , and Ruan, H. H. , 2014, “Influence of Prestress Fields on the Phonon Thermal Conductivity of GaN Nanostructures,” ASME J. Heat Transfer, 136(10), p. 102402. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

Phonon dispersion relations for the SH polarization (a), (c), (e) and for SA and AS polarization (b), (d), (f) in GaN film under different surface stress

Grahic Jump Location
Fig. 1

Schematic drawings of a GaN nanofilm in which heat flow is along to x1 direction

Grahic Jump Location
Fig. 3

Phonon average group velocity of SH mode (a), (c), (e) and SA and AS mode (b), (d), (f) as the function of the phonon energy with the positive surface stress, natural state, and the negative surface stress

Grahic Jump Location
Fig. 4

Phonon DOS of SH mode (a), (c), (e) and SA and AS mode (b), (d), (f) as the function of the phonon energy with the positive surface stress, natural state, and the negative surface stress

Grahic Jump Location
Fig. 5

Phonon thermal conductivity of GaN nanofilm varied with the surface stress for different thickness. κ0 is the bulk thermal conductivity.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In