0
Research Papers

Peeling Silicene From Model Silver Substrates in Molecular Dynamics Simulations

[+] Author and Article Information
Zhao Qin

Laboratory for Atomistic and
Molecular Mechanics (LAMM),
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
Center for Computational Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
e-mail: qinzhao@mit.edu

Zhiping Xu

Applied Mechanics Laboratory,
Department of Engineering Mechanics and
Center for Nano and Micro Mechanics,
Tsinghua University,
Beijing 100084, China

Markus J. Buehler

Laboratory for Atomistic and
Molecular Mechanics (LAMM),
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
Center for Computational Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received April 28, 2015; final manuscript received June 20, 2015; published online July 10, 2015. Editor: Yonggang Huang.

J. Appl. Mech 82(10), 101003 (Jul 10, 2015) (6 pages) Paper No: JAM-15-1213; doi: 10.1115/1.4030888 History: Received April 28, 2015

Silicene is a two-dimensional (2D) allotrope of silicon with a rippled or corrugated honeycomb structure in analogy to graphene. Its semiconducting properties make it attractive for developing future nano-electronic devices. However, it has been challenging to obtain its naked form by using a mechanical exfoliation method as what has been applied to graphene. Here, we use fully atomistic simulations with an effective potential for the silver substrate derived from first-principles calculations to investigate possible ways of peeling silicene solely by mechanical force. We find that the peeling direction is critical for exfoliating silicene and the peeling at a 45 deg angle with the substrate is the most efficient one to detach silicene. Our study could help to understand the mechanics of silicene on substrates and guide the technology of isolation of silicene from the substrate on which it is synthesized.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Guzman-Verri, G. G. , and Voon, L. C. L. Y. , 2007, “Electronic Structure of Silicon-Based Nanostructures,” Phys. Rev. B, 76(7), p. 075131. [CrossRef]
Geim, A. K. , and Novoselov, K. S. , 2007, “The Rise of Graphene,” Nat. Mater., 6(3), pp. 183–191. [CrossRef] [PubMed]
Ni, Z. Y. , Liu, Q. H. , Tang, K. C. , Zheng, J. X. , Zhou, J. , Qin, R. , Gao, Z. X. , Yu, D. P. , and Lu, J. , 2012, “Tunable Bandgap in Silicene and Germanene,” Nano Lett., 12(1), pp. 113–118. [CrossRef] [PubMed]
Geim, A. K. , and Kim, P. , 2008, “Carbon Wonderland,” Sci. Am., 298(4), pp. 90–97. [CrossRef] [PubMed]
Sen, D. , Novoselov, K. S. , Reis, P. M. , and Buehler, M. J. , 2010, “Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons,” Small, 6(10), pp. 1108–1116. [CrossRef] [PubMed]
Mark, P. , 2015, “Graphene's Cousin Silicene Makes Transistor Debut,” Nature, 518(1), pp. 17–18. [PubMed]
Tao, L. , Cinquanta, E. , Chiappe, D. , Grazianetti, C. , Fanciulli, M. , Dubey, M. , Molle, A. , and Akinwande, D. , 2015, “Silicene Field-Effect Transistors Operating at Room Temperature,” Nat. Nanotechnol., 10(3), pp. 227–231. [CrossRef] [PubMed]
Kim, D. H. , Ahn, J. H. , Choi, W. M. , Kim, H. S. , Kim, T. H. , Song, J. Z. , Huang, Y. G. Y. , Liu, Z. J. , Lu, C. , and Rogers, J. A. , 2008, “Stretchable and Foldable Silicon Integrated Circuits,” Science, 320(5875), pp. 507–511. [CrossRef] [PubMed]
Xu, S. , Yan, Z. , Jang, K. I. , Huang, W. , Fu, H. R. , Kim, J. , Wei, Z. , Flavin, M. , McCracken, J. , Wang, R. , Badea, A. , Liu, Y. , Xiao, D. Q. , Zhou, G. Y. , Lee, J. , Chung, H. U. , Cheng, H. Y. , Ren, W. , Banks, A. , Li, X. L. , Paik, U. , Nuzzo, R. G. , Huang, Y. G. , Zhang, Y. H. , and Rogers, J. A. , 2015, “Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling,” Science, 347(6218), pp. 154–159. [CrossRef] [PubMed]
Kim, D. H. , Viventi, J. , Amsden, J. J. , Xiao, J. L. , Vigeland, L. , Kim, Y. S. , Blanco, J. A. , Panilaitis, B. , Frechette, E. S. , Contreras, D. , Kaplan, D. L. , Omenetto, F. G. , Huang, Y. G. , Hwang, K. C. , Zakin, M. R. , Litt, B. , and Rogers, J. A. , 2010, “Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nat. Mater., 9(6), pp. 511–517. [CrossRef] [PubMed]
Ko, H. C. , Stoykovich, M. P. , Song, J. Z. , Malyarchuk, V. , Choi, W. M. , Yu, C. J. , Geddes, J. B. , Xiao, J. L. , Wang, S. D. , Huang, Y. G. , and Rogers, J. A. , 2008, “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454(7205), pp. 748–753. [CrossRef] [PubMed]
Roman, R. E. , and Cranford, S. W. , 2014, “Mechanical Properties of Silicene,” Comput. Mater. Sci., 82, pp. 50–55. [CrossRef]
Botari, T. , Perim, E. , Autreto, P. A. S. , van Duin, A. C. T. , Paupitz, R. , and Galvao, D. S. , 2014, “Mechanical Properties and Fracture Dynamics of Silicene Membranes,” PCCP, 16(36), pp. 19417–19423. [CrossRef] [PubMed]
Plimpton, S. , 1995, “Fast Parallel Algorithms for Short-Range Molecular-Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Kulkarni, A. D. , Truhlar, D. G. , Srinivasan, S. G. , van Duin, A. C. T. , Norman, P. , and Schwartzentruber, T. E. , 2013, “Oxygen Interactions With Silica Surfaces: Coupled Cluster and Density Functional Investigation and the Development of a New ReaxFF Potential,” J. Phys. Chem. C, 117(1), pp. 258–269. [CrossRef]
Magda, J. J. , Tirrell, M. , and Davis, H. T. , 1985, “Molecular-Dynamics of Narrow, Liquid-Filled Pores,” J. Chem. Phys., 83(4), pp. 1888–1901. [CrossRef]
Drummond, N. D. , Zolyomi, V. , and Fal'ko, V. I. , 2012, “Electrically Tunable Band Gap in Silicene,” Phys. Rev. B, 85(7), p. 075423. [CrossRef]
Kresse, G. , and Furthmüller, J. , 1996, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Phys. Rev. B, 54(16), pp. 11169–11186. [CrossRef]
Blöchl, P. E. , 1994, “Projector Augmented-Wave Method,” Phys. Rev. B, 50(24), pp. 17953–17979. [CrossRef]
Perdew, J. P. , Burke, K. , and Ernzerhof, M. , 1996, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77(18), pp. 3865–3868. [CrossRef] [PubMed]
Vogt, P. , De Padova, P. , Quaresima, C. , Avila, J. , Frantzeskakis, E. , Asensio, M. C. , Resta, A. , Ealet, B. , and Le Lay, G. , 2012, “Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon,” Phys. Rev. Lett., 108(15), p. 155501. [CrossRef] [PubMed]
Chun-Liang, L. , Ryuichi, A. , Kazuaki, K. , Noriyuki, T. , Emi, M. , Yousoo, K. , Noriaki, T. , and Maki, K. , 2012, “Structure of Silicene Grown on Ag(111),” Appl. Phys. Express, 5(4), p. 045802. [CrossRef]
Resta, A. , Leoni, T. , Barth, C. , Ranguis, A. , Becker, C. , Bruhn, T. , Vogt, P. , and Le Lay, G. , 2013, “Atomic Structures of Silicene Layers Grown on Ag(111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations,” Sci. Rep., 3, p. 2399. [CrossRef] [PubMed]
Wang, Y.-P. , and Cheng, H.-P. , 2013, “Absence of a Dirac Cone in Silicene on Ag(111): First-Principles Density Functional Calculations With a Modified Effective Band Structure Technique,” Phys. Rev. B, 87(24), p. 245430. [CrossRef]
Ishida, H. , Hamamoto, Y. , Morikawa, Y. , Minamitani, E. , Arafune, R. , and Takagi, N. , 2015, “Electronic Structure of the 4 √Ó 4 Silicene Monolayer on Semi-Infinite Ag(111),” New J. Phys., 17(1), p. 015013. [CrossRef]
Xu, Z. , and Buehler, M. J. , 2010, “Interface Structure and Mechanics Between Graphene and Metal Substrates: A First-Principles Study,” J. Phys.: Condens. Matter, 22(48), p. 485301. [CrossRef] [PubMed]
Lee, G. H. , Cooper, R. C. , An, S. J. , Lee, S. , van der Zande, A. , Petrone, N. , Hammerherg, A. G. , Lee, C. , Crawford, B. , Oliver, W. , Kysar, J. W. , and Hone, J. , 2013, “High-Strength Chemical-Vapor Deposited Graphene and Grain Boundaries,” Science, 340(6136), pp. 1073–1076. [CrossRef] [PubMed]
Molle, A. , Grazianetti, C. , Chiappe, D. , Cinquanta, E. , Cianci, E. , Tallarida, G. , and Fanciulli, M. , 2013, “Hindering the Oxidation of Silicene With Non-Reactive Encapsulation,” Adv. Funct. Mater., 23(35), pp. 4340–4344. [CrossRef]
Hamm, E. , Reis, P. , LeBlanc, M. , Roman, B. , and Cerda, E. , 2008, “Tearing as a Test for Mechanical Characterization of Thin Adhesive Films,” Nat. Mater., 7(5), pp. 386–390. [CrossRef] [PubMed]
Castle, T. , Cho, Y. G. , Gong, X. T. , Jung, E. Y. , Sussman, D. M. , Yang, S. , and Kamien, R. D. , 2014, “Making the Cut: Lattice Kirigami Rules,” Phys. Rev. Lett., 113(24), p. 245502. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The top view (a) and side view (b) of the DFT simulation system of silicene layer (with golden particles for silicon atoms) on the top of Ag (111) surface (with gray particles for silver atoms) at equilibrium. The frame in the two snapshots highlights the supercell used in the interfacial energy calculations.

Grahic Jump Location
Fig. 2

Peeling silicene from Ag surface is difficult and cannot follow the same way as preparing graphene. (a) Simulation snapshots of the deformation and displacement (d) of silicene under peeling, with panels i to v corresponding to the d value given in (c). (b) Number of Si–Si bond (NSi–Si, a bond is judged to form if the Si–Si interatomic distance < 2.8 Å) for all the silicon atoms between the two initial notches as a function of the moving distance of the fix boundary. (c) The total loading force (F) and forces in y (Fy) and z (Fz) directions recorded during the silicene peeling, solid curves are results of moving average for every 2 Å in displacement.

Grahic Jump Location
Fig. 5

Silicene ribbon can be obtained by peeling in 45 deg. (a) The total area (A) of silicene been peeled from the substrate as a function of the two times of the peeling angel (2θ), which corresponds to the angle between the silicene been peeled off and the substrate as illustrated by the inserted schematic figures. (b) The apex angle φ of the wedgelike silicene ribbon after peeling as a function of 2θ, where θ = 45 deg yields the smallest φ. (c) Simulation snapshots of the silicene under peeling with a peeling angle of 45 deg. (d) Side view of the snapshots in (c) with the pictures overlaid.

Grahic Jump Location
Fig. 4

Strength of silicene with defects. (a) The stress–strain (σ–ε) curves of the silicene ribbons with different ratio of missing atoms (p) as defects. (b) Summary of the rupture strength (σC) of the silicene ribbon as a function of the ratio of missing atoms. In the two sets of simulations, the defected silicene is subjected to different interactions with the substrate as γ = 0 and γ = 8.82 eV/nm2 for the effective Ag substrate. The exponential decay fit has the function of σC = 6.4exp(-p/0.126) for simulations with γ = 0 and σC = 6.7exp(-p/0.134) for simulations with γ = 8.82 eV/nm2.

Grahic Jump Location
Fig. 3

Strength of silicene under interfacial confinements. (a) Snapshots of the deformation of a silicene ribbon under a uniaxial tensile load, with panels (a-i) to (a-v) corresponding to (c). For (a-ii), the atoms and bonds are colored by out-of-plane displacement as given by the legend. (b) The stress–strain (σ–ε) curves of the silicene ribbons confined by different cohesive energy (γ, with γ = 8.82 eV/nm2 for interaction with Ag (111) surface) with the interface. (c) Summary of the rupture strength (σC) of the silicene ribbon as a function of the cohesive energy. The asymptotic value of silicene strength is 9.0 ± 0.1 N/m as indicated by the dashed line.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In