Contact behavior of a rigid cylindrical punch sliding on an elastically graded half-plane with shear modulus gradient variation in an arbitrary direction is investigated. The governing partial differential equations and the boundary conditions are achieved with the help of Fourier integral transformation. As a result, the present problem is reduced to a singular integral equation of the second kind, which can be solved numerically. Furthermore, the presently general model can be well degraded to special cases of a lateral gradient half-plane and a homogeneous one. Normal stress in the contact region is predicted with different material parameters, which is usually used to estimate the possibility of surface crack initiation. The moment that is needed to ensure stable sliding of the cylindrical punch on the contact surface is further predicted. The result in the present paper should be helpful for the design of novel graded materials with surfaces of strong abrasion resistance.