0
Technical Brief

Morphological Instability of a Transversally Isotropic Solid Cylinder Under Stress

[+] Author and Article Information
Jérôme Colin

Institut P′, Université de Poitiers,
SP2MI-Téléport 2,
Futuroscope-Chasseneuil cedex 86962, France
e-mail: jerome.colin@univ-poitiers.fr

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received August 29, 2014; final manuscript received January 7, 2015; published online January 23, 2015. Assoc. Editor: George Kardomateas.

J. Appl. Mech 82(3), 034501 (Mar 01, 2015) (3 pages) Paper No: JAM-14-1402; doi: 10.1115/1.4029549 History: Received August 29, 2014; Revised January 07, 2015; Online January 23, 2015

The linear stability of the surface of a transversally isotropic cylinder submitted to uniaxial stress has been theoretically investigated with respect to the development by surface diffusion of longitudinal fluctuations of its radius. The effect of stress has been characterized on the instability threshold.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nichols, F. A., and Mullins, W. W., 1965, “Surface- (Interface-) and Volume-Diffusion Contributions to Morphological Changes Driven by Capillarity,” Trans. Metall. Soc. AIME, 233, pp. 1840–1848.
Colin, J., Grilhé, J., and Junqua, N., 1997, “Surface Instabilities of a Stressed Cylindrical Whisker,” Phil. Mag. A, 76(4), pp. 793–805. [CrossRef]
Asaro, R. J., and Tiller, W. A., 1972, “Interface Morphology Development During Stress-Corrosion Cracking: Part I. Via Surface Diffusion,” Metall. Trans., 3(7), pp. 1789–1796. [CrossRef]
Grinfeld, M. A., 1986, “Instability of the Separation Boundary Between a Non-Hydrostatically Stressed Elastic Body and a Melt,” Sov. Phys. Dokl., 31, pp. 831–834.
Srolovitz, D. J., 1989, “On the Stability of Surfaces of Stressed Solids,” Acta Metall., 37(2), pp. 621–625. [CrossRef]
Kirill, D. J., Davis, S. H., Miksis, M. J., and Voorhees, P. W., 1999, “Morphological Instability of a Whisker,” Proc. R. Soc. London A, 455(1990), pp. 3825–3844. [CrossRef]
Yang, F. Q., 2003, “On the Interface Instability of a Cylindrical Fiber Embedded in a Matrix,” Scr. Mater., 49(6), pp. 571–575. [CrossRef]
Kirill, D. J., Davis, S. H., Miksis, M. J., and Voorhees, P., 2002, “Morphological Instability of Pores and Tubules,” Interface Free Boundaries, 4(4), pp. 371–394. [CrossRef]
Schmidt, V., McIntyre, P. C., and Gösele, U., 2008, “Morphological Instability of Misfit-Strained Core–Shell Nanowires,” Phys. Rev. B, 77(23), p. 235302. [CrossRef]
Colin, J., 2007, “On the Surface Stability of a Spherical Void Embedded in a Stressed Matrix,” ASME J. Appl. Mech., 74(1), pp. 8–12. [CrossRef]
Colin, J., 2005, “Surface Instability in Materials Science: Morphological Change and Delamination of Stressed Solids,” Mathematical Methods and Models, A.Miranville, ed., Nova Science Publishers, Inc., Hauppauge, New York, pp. 229–257.
Wang, W., and Suo, Z., 1997, “Shape Change of a Pore in a Stressed Solid Via Surface Diffusion Motivated by Surface and Elastic Energy Variation,” J. Mech. Phys. Solids, 45(5), pp. 709–729. [CrossRef]
Leo, P. H., Iwan, J., Alexander, D., and Sekerka, R. F., 1985, “Elastic Fields About a Perturbed Spherical Inclusion,” Acta Metall., 33(6), pp. 985–989. [CrossRef]
Leo, P. H., and Sekerka, R. F., 1989, “The Effect of Elastic Fields on the Morphological Stability of a Precipitate Grown From Solid Solution,” Acta Metall., 37(12), pp. 3139–3149. [CrossRef]
Gao, H., 1991, “Morphological Instabilities Along Surfaces of Anisotropic Solids,” Modern Theory of Anisotropic Elasticity and Applications, J. J.Wu, T. C. T.Ting, and D.Barnett, eds., SIAM, Philadelphia, PA, pp. 139–150.
Lekhnitskii, S. G., 1963, “Theory of Elasticity of an Anisotropic Elastic Body,” J. J.Brandstatter, ed., Holden-Day, Inc., San Francisco CA, pp. 335–397.
Spencer, B. J., Voorhees, P. W., and Davis, S. H., 1991, “Morphological Instability in Epitaxially Strained Dislocation-Free Solid Films,” Phys. Rev. Lett., 67(26), pp. 3696–3699. [CrossRef] [PubMed]
Kim, I.-D., Rothschild, A., Lee, B. H., Kim, D. Y., Jo, S. M., and Tuller, H. L., 2006, “Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers,” Nano Lett., 6(9), pp. 2009–2013. [CrossRef] [PubMed]
Ha, J.-Y., Sosnowchik, B. D., Lin, L., Kang, D. H., and Davydov, A. V., 2011, “Patterned Growth of TiO2 Nanowires on Titanium Substrates,” Appl. Phys. Exp., 4(6), p. 065002. [CrossRef]
Tromans, D., 2011, “Elastic Anisotropy of HCP Metal Crystals and Polycrystals,” Int. J. Res. Rev. Appl. Sci., 6(4), pp. 462–483.
Roth, T. A., and Suppayak, P., 1978, “The Surface and Grain Boundary Free Energies of Pure Titanium and the Titanium Alloy Ti–6AL–4V,” Mat. Sci. Eng., 35(2), pp. 187–196. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

k˜c and k˜p versus K, with E1 = 104 GPa, ν1 = 0.337, G1 = 39.9 GPa, and E2 = 146.2 GPa, ν2 = 0.265, G2 = 46.5 GPa

Grahic Jump Location
Fig. 1

τ versus k˜ for different values of K, with E1 = 104 GPa, ν1 = 0.337, G1 = 39.9 GPa, and E2 = 146.2 GPa, ν2 = 0.265, G2 = 46.5 GPa

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In