A finite inflation analysis of two circumferentially bonded hyperelastic circular flat membranes with uniform internal pressure is presented. The governing equations of equilibrium are obtained using the variational formulation. By making a suitable change in the field variables, the problem is formulated as a set of two coupled nonlinear two point boundary value problem (TPBVP) and is solved using the shooting method. Membranes of identical and dissimilar material properties are considered in the analysis. For dissimilar membranes, asymmetric inflation, and remarkably, deflation (after an initial phase of inflation) in one of the membranes in certain cases, has been observed. The effect of inflation pressure and material properties on the geometry of inflated configuration, state of stress, and the impending wrinkling condition of the membranes are also studied. This work has relevance to tunable inflated reflectors and lenses among other applications.