0
Research Papers

Evaluation of Reissner’s Equations of Finite Pure Bending of Curved Elastic Tubes

[+] Author and Article Information
S.V. Levyakov

Department of Engineering Mathematics,
Novosibirsk State Technical University,
Novosibirsk 630092, Russia

Manuscript received July 1, 2013; final manuscript received September 3, 2013; accepted manuscript posted September 12, 2013; published online October 16, 2013. Assoc. Editor: George Kardomateas.

J. Appl. Mech 81(4), 041014 (Oct 16, 2013) (9 pages) Paper No: JAM-13-1268; doi: 10.1115/1.4025414 History: Received July 01, 2013; Revised September 03, 2013; Accepted September 12, 2013

The paper discusses nonlinear equations of in-plane bending of curved tubes formulated by E. Reissner in terms of two unknown functions and two unknown parameters. To solve the equations, a numerical method based on the finite-difference approximations and Newton–Raphson iteration technique is proposed. Deformations and stresses in tubes of circular and noncircular cross sections are studied for a wide range of geometrical parameters. The accuracy of the equations is evaluated by comparing the numerical results with predictions obtained by a special shell finite element.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Reissner, E., 1981, “On Finite Pure Bending of Curved Tubes,” Int. J. Solids Struct., 17(9), pp. 839–844. [CrossRef]
Dubyaga, K. M., 1909, “The Bending of Thin-Walled Curved Tubes,” Izv. S.-Peterburgskogo Politekh. Inst., 11, pp. 663–675.
Bantlin, A., 1910, “Formanderung und Beanspruchung Federnder Ausglichrohren,” VDI Z. (1857–1968), 54(2), pp. 43–49.
Karman, Th. von, 1911, “Uber die Formanderung Dunnwandiger Rohre Insbesonders Federnder Angleschrohre,” VDI Z. (1857)–(1968), 55, pp. 1889–1895.
Lorenz, H., 1912, “Die Biegung Krummer Rohre,” Phy. Z., 13(16), pp. 768–774.
Hovgaard, W., 1926, “Bending of a Curved Tube of Circular Cross Section,” Proc. Natl. Acad. Sci. U.S.A., 12(6), pp. 365–370. [CrossRef] [PubMed]
Karl, H., 1943, “Biegung Gekrummer, Dunnwandiger Rohre,” ZAMM, 23, pp. 331–345. [CrossRef]
Beskin, L., 1945, “Bending of Curved Thin Tubes,” Trans. ASME, 67, pp. A1–A7.
Reissner, E., 1949, “On Bending of Curved Thin-Walled Tubes,” Proc. Natl. Acad. Sci. U.S.A., 35, pp. 204–288. [CrossRef] [PubMed]
Clark, R. A., and Reissner, E., 1951, “Bending of Curved Tubes,” Adv. Appl. Mech., 2, pp. 93–122. [CrossRef]
Kafka, P. G., and Dunn, M. B., 1956, “Stiffness of Curved Circular Tubes With Internal Pressure,” Trans. ASME. Ser. E: J. Appl. Mech., 23(2), pp. 247–254.
Rodabaugh, E. C., and George, H. H., 1957, “Effect of Internal Pressure on Flexibility and Stress Intensification Factors of Curved Pipe or Welding Elbows,” Trans ASME. Ser. E: J. Appl. Mech., 79(4), pp. 939–948.
Crandall, S. H., and DahlN. C., 1957, “The Influence of Pressure on Bending of Curved Tubes,” Proc 9th Congr. Appl Mech. Bruxelles, 6, pp. 101–111.
Kostovetskii, D. L., 1960, “The Effect of Initial Ellipticity of the Cross Section on Bending of Curved Thin-Walled Tube,” Energomashinostroenie, 3, pp. 23–27.
Jones, N., 1967, “In-Plane Bending of Short-Radius Curved Pipe Bend,” Trans. ASME, Ser. B, 89(2), pp. 271–277. [CrossRef]
Cheng, D. H., and Thailer, H. J., 1968, “In-Plane Bending of Curved Circular Tubes,” Trans. ASME. Ser. B, 90(4), pp. 666–670. [CrossRef]
Cheng, D. H., and Thailer, H. J., 1970, “On Bending of Curved Circular Tubes,” Trans. ASME. Ser. B, 92(1), pp. 62–66. [CrossRef]
Chernykh, K. F., 1960, “Saint-Venants’s Problem for Thin-Walled Tubes With a Circular Axis,” Prikl. Mat. Mekh., 24(3), pp. 423–432.
Cherniy, V.P., 2001, “Effect of Curved Bar Properties on Bending of Curved Pipes,” Trans. ASME, 68, pp. 650–655. [CrossRef]
Timoshenko, S., 1923, “Bending Stresses in Curved Tubes of Rectangular Cross Section,” Trans. ASME, 45(1893), pp. 135–140.
De Melo, F.J.M.Q., and Vaz, M.A.P., 1992, “The Linear Elastic In-Plane Bending of Curved Hollow Profiles Having a Thin-Walled Rectangular Section,” J. Strain Anal., 27(3), pp. 145–149. [CrossRef]
Huber, M. T., 1948, “The Bending of the Curved Tubes of Elliptic Section,” Proc. VIIth Int. Congr. Appl. Mech. London, 1, pp. 322–328.
Olesiak, Z., 1955, “Stan Naprezenia i Odksztalcenia Sprezystego Zginanej Rury Cienkosciennej o Przekroju Soczewkowatym,” Arch. Mech. Stosow., 7(4), pp. 503–518.
Whatham, J. F., 1987, “Analysis of Pipe Bends With Symmetrical Noncircular Cross Sections,” Trans. ASME. Ser. E: J. Appl. Mech., 54(3), pp. 604–610. [CrossRef]
Brazier, L. G., 1927, “On the Flexure of Thin Cylindrical Shells and Other ‘Thin’ Sections,” Proc. R. Soc., Ser. A, 116(773), pp. 104–114. [CrossRef]
Wood, J. D., 1958, “The Flexure of a Uniformly Pressurized Circular, Cylindrical Shell,” Trans. ASME. Ser. E: J. Appl. Mech., 25(4), pp. 453–458.
Chwalla, E., 1933, “Reine Biegung Schlanker, Dunnwandiger Rohre mit Gerader Achse,” ZAMM, 13(1), pp. 48–53. [CrossRef]
Heck, O. S., 1937, “Uber der Stabilitat Orthotroper Elliptischer Zylinderschalen bei Reiner Biegung,” Luftfahrtforschung, 14(3), pp. 137–147.
Konovalov, Yu. V., 1940, “Bending of Infinite Cylindrical Shell,” Prikl. Mat. Mekh., 4(5), pp. 35–54.
Reissner, E., 1961, “On Finite Pure Bending of Cylindrical Tubes,” Osterr. Ing.-Arch., 15, pp. 165–172.
Reissner, E., and Weinitschke, H. J., 1963, “Finite Pure Bending of Circular Tubes,” Q. Appl. Math., 20(4), pp. 305–319.
Reissner, E., and Weinitschke, H. J., 1966, “Corrections to “Finite Pure Bending of Circular Tubes,” Q. Appl. Math., 23(4), p. 368.
Perrone, N., and Kao, R., 1971, “A General Nonlinear Relaxation Iteration Technique for Solving Nonlinear Problems in Mechanics,” Trans. ASME. Ser. E: J. Appl. Mech., 38(2), pp. 371–376. [CrossRef]
Na, T. Y., and Turski, C. E., 1974, “Solution of the Nonlinear Differential Equations for Finite Bending of Thin-Walled Tubes by Parameter Differentiation,” Aeronaut. Q., 25(1), pp. 14–18.
Thurston, G. A., 1977, “The Critical Bending Moment of Circular Cylindrical Tubes,” Trans. ASME. Ser. E: J. Appl. Mech., 44, pp. 173–175. [CrossRef]
Gellin, S., 1980, “The Plastic Buckling of Long Cylindrical Shells Under Pure Bending,” Int. J. Solids Struct., 16(5), pp. 397–407. [CrossRef]
Spence, J., and Toh, L. H., 1979, “Collapse of Thin Orthotropic Elliptical Cylindrical Shells Under Combined Bending and Pressure Loads,” Trans ASME. Ser. E: J. Appl. Mech., 46, pp. 363–371. [CrossRef]
Reissner, E., 1959, “On Finite Bending of Pressurized Tubes,” J. Appl. Mech., 26, pp. 386–392.
Kostovetskii, D. L., 1960, “Bending of Thin-Walled Curved Pipes in the Regions of Large Elastic Deformations,” Izv. Akad. Nauk SSSR, OTN Mekh. i Mash., 3, pp. 49–54.
Axelrad, E. L., 1960, “Nonlinear Equations of Shells of Revolution and of Bending of Thin-Walled Beams,” Izv. Akad. Nauk SSSR, OTN Mekh. i Mash., 4, pp. 84–92.
Axelrad, E. L., 1985, “Elastic Tubes-Assumptions, Equations, Edge Conditions,” Thin-Walled Struct., 3(3), pp. 193–215. [CrossRef]
Boyle, J. T., 1981, “The Finite Bending of Curved Pipes,” Int. J. Solids Struct., 17(5), pp. 515–529. [CrossRef]
Cook, R. D., 1989, “Axisymmetric Finite Element Analysis for Pure Moment Loading of Curved Beams and Pipe Bends,” Comput. Struct., 33(2), pp. 483–487. [CrossRef]
Di Pasquantonio, F., Macchi, A., and Villa, A., 1977, “Calcolo col Metodo Degli, Elementi Finiti del Coefficientedi Fessibita dei Tubi Curbi Piani,” Energ. Elettr., 54(4), pp. 177–183.
Boussaa, Dj., Dang, K., Van, Labbe, P., and Tang, H. T., 1996, “Finite Pure Bending of Curved Pipes,” Comput. Struct., 60(6), pp. 1003–1012. [CrossRef]
Kuznetsov, V. V., and Levyakov, S. V., 2001, “Nonlinear Pure Bending of Toroidal Shells of Arbitrary Cross Section,” Int. J. Solids Struct., 38, pp. 7343–7354. [CrossRef]
Axelrad, E. L., 1965, “Refinement of the Upper Critical Loading of Pipe Bending Taking Account of the Geometrical Nonlinearity,” Izv. Akad. Nauk SSSR, OTN Mekh. i Mash., 4, pp. 123–139.
Whatham, J. F., 1982, “Analysis of Circular Pipe Bends With Flanged Ends,” Nucl. Eng. Des., 72(2), pp. 175–187. [CrossRef]
Abramowitz, M., and Stegun, I. A., 1972. Handbook of Mathematical Functions With Formulas, Graphs, and Tables, National Bureau of Standards, Dover Publications, New York.

Figures

Grahic Jump Location
Fig. 1

Cross sections used in the analysis: (a) circular section (A = 0); oval or two-lobe section (A = 0.5 and n = 2); (c) three-lobe section (A = 0.5 and n = 3)

Grahic Jump Location
Fig. 2

Meridional stress distribution over the circular cross section

Grahic Jump Location
Fig. 3

Longitudinal stress distribution over the circular cross section

Grahic Jump Location
Fig. 4

Meridional stress distribution over the oval cross section

Grahic Jump Location
Fig. 5

Longitudinal stress distribution over the oval cross section

Grahic Jump Location
Fig. 6

Meridional stress distribution over the three-lobe cross section

Grahic Jump Location
Fig. 7

Longitudinal stress distribution over the three-lobe cross section

Grahic Jump Location
Fig. 8

Half of the cross section as an arch under squeezing load

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In