Research Papers

Surface and Thermal Effects on the Pull-In Behavior of Doubly-Clamped Graphene Nanoribbons Under Electrostatic and Casimir Loads

[+] Author and Article Information
Wei Lu

e-mail: weilu@umich.edu
Department of Mechanical Engineering,
University of Michigan,
Ann Arbor, MI 48109

1Corresponding author.

Manuscript received November 16, 2012; final manuscript received December 22, 2012; accepted manuscript posted February 14, 2013; published online August 21, 2013. Editor: Yonggang Huang.

J. Appl. Mech 80(6), 061014 (Aug 21, 2013) (9 pages) Paper No: JAM-12-1519; doi: 10.1115/1.4023683 History: Received November 16, 2012; Revised December 22, 2012; Accepted February 14, 2013

In this study, a comprehensive analytical model is established based on Euler–Bernoulli beam theory with von Kármán geometric nonlinearity to investigate the effect of residual surface tension, surface elasticity, and temperature on the static pull-in voltages of multilayer graphene nanoribbon (MLGNR) doubly-clamped beams under electrostatic and Casimir forces and axial residual stress. An explicit closed-form analytical solution to the governing fourth-order nonlinear differential equation of variable coefficients is presented for the static pull-in behavior of electrostatic nanoactuators using a Fredholm integral equation of the first kind. The high accuracy of the present analytical model is validated for some special cases through comparison with other existing numerical, analytical, and experimental models. The effects of the number of graphene nanoribbons (GNRs), temperature, surface tension, and surface elasticity on the pull-in voltage and displacement of MLGNR electrostatic nanoactuaotrs are investigated. Results indicate that the thermal effect on the pull-in voltage is significant especially when a smaller number of GNRs are used. It is found that the surface effects become more dominant as the number of GNRs decreases. It is also demonstrated that the residual surface tension exerts a greater influence on the pull-in voltage in comparison with the surface elasticity.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Lee, C., Wei, X. D., Kysar, J. W., and Hone, J., 2008, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, 321(5887), pp. 385–388. [CrossRef] [PubMed]
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., 2009, “The Electronic Properties of Graphene,” Rev. Mod. Phys., 81(1), pp. 109–162. [CrossRef]
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., and Geim, A. K., 2008, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, 320(5881), pp. 1308–1315. [CrossRef] [PubMed]
Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., 2008, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., 8(3), pp. 902–907. [CrossRef] [PubMed]
Lin, Y. M., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H. Y., Grill, A., and Avouris, P., 2010, “100-GHz Transistors From Wafer-Scale Epitaxial Graphene,” Science, 327(5966), p. 662. [CrossRef] [PubMed]
Liu, M., Yin, X. B., Ulin-Avila, E., Geng, B. S., Zentgraf, T., Ju, L., Wang, F., and Zhang, X., 2011, “A Graphene-Based Broadband Optical Modulator,” Nature, 474(7349), pp. 64–67. [CrossRef] [PubMed]
Liu, C. G., Yu, Z. N., Neff, D., Zhamu, A., and Jang, B. Z., 2010, “Graphene-Based Supercapacitor With an Ultrahigh Energy Density,” Nano Lett., 10(12), pp. 4863–4868. [CrossRef]
Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H., and Ruoff, R. S., 2008, “Graphene-Based Ultracapacitors,” Nano Lett., 8(10), pp. 3498–3502. [CrossRef] [PubMed]
Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., and McEuen, P. L., 2007, “Mechanical Properties of Suspended Graphene Sheets,” J. Vac. Sci. Technol. B, 25(6), pp. 2558–2561. [CrossRef]
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Ruoff, R. S., 2006, “Graphene-Based Composite Materials,” Nature, 442(7100), pp. 282–286. [CrossRef] [PubMed]
Terrones, M., Botello-Mendez, A. R., Campos-Delgado, J., Lopez-Urias, F., Vega-Cantu, Y. I., Rodriguez-Macias, F. J., Elias, A. L., Munoz-Sandoval, E., Cano-Marquez, A. G., Charlier, J. C., and Terrones, H., 2010, “Graphene and Graphite Nanoribbons: Morphology, Properties, Synthesis, Defects and Applications,” Nano Today, 5(4), pp. 351–372. [CrossRef]
Mccarley, R. L., Hendricks, S. A., and Bard, A. J., 1992, “Controlled Nanofabrication of Highly Oriented Pyrolytic-Graphite With the Scanning Tunneling Microscope,” J. Phys. Chem., 96(25), pp. 10089–10092. [CrossRef]
Moreno-Moreno, M., Castellanos-Gomez, A., Rubio-Bollinger, G., Gomez-Herrero, J., and Agrait, N., 2009, “Ultralong Natural Graphene Nanoribbons and Their Electrical Conductivity,” Small, 5(8), pp. 924–927. [CrossRef] [PubMed]
Wei, D. C., Liu, Y. Q., Zhang, H. L., Huang, L. P., Wu, B., Chen, J. Y., and Yu, G., 2009, “Scalable Synthesis of Few-Layer Graphene Ribbons With Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches,” J. Am. Chem. Soc., 131(31), pp. 11147–11154. [CrossRef] [PubMed]
Li, X. L., Wang, X. R., Zhang, L., Lee, S. W., and Dai, H. J., 2008, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors,” Science, 319(5867), pp. 1229–1232. [CrossRef] [PubMed]
Yang, X. Y., Dou, X., Rouhanipour, A., Zhi, L. J., Rader, H. J., and Mullen, K., 2008, “Two-Dimensional Graphene Nanoribbons,” J. Am. Chem. Soc., 130(13), pp. 4216–4217. [CrossRef] [PubMed]
Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G., and Dai, H. J., 2009, “Narrow Graphene Nanoribbons From Carbon Nanotubes,” Nature, 458(7240), pp. 877–880. [CrossRef] [PubMed]
Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., and Tour, J. M., 2009, “Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons,” Nature, 458(7240), pp. 872–876. [CrossRef] [PubMed]
Terrones, M., 2009, “Materials Science Nanotubes Unzipped,” Nature, 458(7240), pp. 845–846. [CrossRef] [PubMed]
Pelesko, J. A., and Bernstein, D. H., 2002, Modeling MEMS and NEMS, Chapman and Hall, London.
Nathanson, H. C., Newell, W. E., Wickstrom, R. A., and Davis, J. R., 1967, “The Resonant Gate Transistor,” IEEE Trans. Electron. Dev., 14, pp. 117–133. [CrossRef]
Taylor, G. I., 1968, “The Coalescence of Closely Spaced Drops When They Are at Different Electric Potentials,” Proc. R. Soc. London Sect. A, 306, pp. 423–434. [CrossRef]
Hung, E. S., and Senturia, S. D., 1999, “Extending the Travel Range of Analog-Tuned Electrostatic Actuators,” J. Microelectromech. Syst., 8(4), pp. 497–505. [CrossRef]
Legtenberg, R., and Tilmans, H. A. C., 1994, “Electrostatically Driven Vacuum-Encapsulated Polysilicon Resonators. 1. Design and Fabrication,” Sens. Actuators, A, 45(1), pp. 57–66. [CrossRef]
Nguyen, C. T. C., Katehi, L. P. B., and Rebeiz, G. M., 1998, “Micromachined Devices for Wireless Communications,” Proc. IEEE, 86(8), pp. 1756–1768. [CrossRef]
Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., and McEuen, P. L., 2007, “Electromechanical Resonators From Graphene Sheets,” Science, 315(5811), pp. 490–493. [CrossRef] [PubMed]
Zhu, S. E., Shabani, R., Rho, J., Kim, Y., Hong, B. H., Ahn, J. H., and Cho, H. J., 2011, “Graphene-Based Bimorph Microactuators,” Nano Lett., 11(3), pp. 977–981. [CrossRef] [PubMed]
Song, F., Huang, G. L., Park, H. S., and Liu, X. N., 2011, “A Continuum Model for the Mechanical Behavior of Nanowires Including Surface and Surface-Induced Initial Stresses,” Int. J. Solids Struct., 48(14–15), pp. 2154–2163. [CrossRef]
Saeedi Vahdat, A., and Rezazadeh, G., 2011, “Effects of Axial and Residual Stresses on Thermoelastic Damping in Capacitive Micro-Beam Resonators,” J. Franklin Inst., 348, pp. 622–639. [CrossRef]
Gheshlaghi, B., and Hasheminejad, S. M., 2011, “Surface Effects on Nonlinear Free Vibration of Nanobeams,” Composites, Part B, 42(4), pp. 934–937. [CrossRef]
Kovalenko, A. D., 1969, Thermoelasticity, Wolters-Noordhoff Publishing, Gröningen, The Netherlands.
Conley, H., Lavrik, N. V., Prasai, D., and Bolotin, K. I., 2011, “Graphene Bimetallic-Like Cantilevers: Probing Graphene/Substrate Interactions,” Nano Lett., 11(11), pp. 4748–4752. [CrossRef] [PubMed]
Singh, V., Sengupta, S., Solanki, H. S., Dhall, R., Allain, A., Dhara, S., Pant, P., and Deshmukh, M. M., 2010, “Probing Thermal Expansion of Graphene and Modal Dispersion at Low-Temperature Using Graphene Nanoelectromechanical Systems Resonators,” Nanotechnology, 21(16), 165204. [CrossRef] [PubMed]
Bao, W. Z., Miao, F., Chen, Z., Zhang, H., Jang, W. Y., Dames, C., and Lau, C. N., 2009, “Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes,” Nat. Nanotechnol., 4(9), pp. 562–566. [CrossRef] [PubMed]
Jiang, J. W., Wang, J. S., and Li, B. W., 2009, “Thermal Expansion in Single-Walled Carbon Nanotubes and Graphene: Nonequilibrium Green's Function Approach,” Phys. Rev. B, 80(20), 205429. [CrossRef]
Bailey, A. C., and Yates, B., 1970, “Anisotropic Thermal Expansion of Pyrolytic Graphite at Low Temperatures,” J. Appl. Phys., 41(13), pp. 5088–5091. [CrossRef]
Pierson, H. O., 1993, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications, Noyes Publications, Park Ridge, NJ.
Chen, C. Y., Rosenblatt, S., Bolotin, K. I., Kalb, W., Kim, P., Kymissis, I., Stormer, H. L., Heinz, T. F., and Hone, J., 2009, “Performance of Monolayer Graphene Nanomechanical Resonators With Electrical Readout,” Nat. Nanotechnol., 4(12), pp. 861–867. [CrossRef] [PubMed]
Mounet, N., and Marzari, N., 2005, “First-Principles Determination of the Structural, Vibrational and Thermodynamic Properties of Diamond, Graphite, and Derivatives,” Phys. Rev. B, 71(20), 205214. [CrossRef]
Huang, J. M., Liew, K. M., Wong, C. H., Rajendran, S., Tan, M. J., and Liu, A. Q., 2001, “Mechanical Design and Optimization of Capacitive Micromachined Switch,” Sens. Actuators, A, 93(3), pp. 273–285. [CrossRef]
Bordag, M., Fialkovsky, I. V., Gitman, D. M., and Vassilevich, D. V., 2009, “Casimir Interaction Between a Perfect Conductor and Graphene Described by the Dirac Model,” Phys. Rev. B, 80(24), 245406. [CrossRef]
Fialkovsky, I. V., Marachevsky, V. N., and Vassilevich, D. V., 2011, “Finite-Temperature Casimir Effect for Graphene,” Phys. Rev. B, 84(3), p. 035446. [CrossRef]
Abadyan, M., Novinzadeh, A., and Kazemi, A., 2010, “Approximating the Effect of the Casimir Force on the Instability of Electrostatic Nano-Cantilevers,” Phys. Scr., 81(1), p. 015801. [CrossRef]
Ramezani, A., Alasty, A., and Akbari, J., 2007, “Closed-Form Solutions of the Pull-In Instability in Nano-Cantilevers Under Electrostatic and Intermolecular Surface Forces,” Int. J. Solids Struct., 44(14–15), pp. 4925–4941. [CrossRef]
Rokni, H., Seethaler, R. J., Milani, A. S., Hosseini-Hashemi, S., and Li, X. F., 2013, “Exact Closed-Form Solutions for Size-Dependent Static Pull-In Behavior in Electrostatic Microactuators Via Fredholm Integral Equation,” Sens. Actuators, A, 190(1), pp. 32–43. [CrossRef]
Rokni, H., and Lu, W., 2012, “Effect of Graphene Layers on Static Pull-In Behavior of Bilayer Graphene/Substrate Electrostatic Microactuators,” J. Microelectromech. Syst., 99, pp. 1–7. [CrossRef]
Osterberg, P. M., and Senturia, S. D., 1997, “M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures,” J. Microelectromech. Syst., 6(2), pp. 107–118. [CrossRef]
O'Mahony, C., Hill, M., Duane, R., and Mathewson, A., 2003, “Analysis of Electromechanical Boundary Effects on the Pull-In of Micromachined Fixed-Fixed Beams,” J. Micromech. Microeng., 13(4), pp. S75–S80. [CrossRef]
Chowdhury, S., Ahmadi, M., and Miller, W. C., 2006, “Pull-In Voltage Study of Electrostatically Actuated Fixed-Fixed Beams Using a VLSI On-Chip Interconnect Capacitance Model,” J. Microelectromech. Syst., 15(3), pp. 639–651. [CrossRef]
Sadeghian, H., Rezazadeh, G., and Osterberg, P. M., 2007, “Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches,” J. Microelectromech. Syst., 16(6), pp. 1334–1340. [CrossRef]
Fu, Y. M., and Zhang, J., 2011, “Size-Dependent Pull-In Phenomena in Electrically Actuated Nanobeams Incorporating Surface Energies,” Appl. Math. Model., 35(2), pp. 941–951. [CrossRef]


Grahic Jump Location
Fig. 2

MLGNR beam with surface effects and subject to electrostatic and Casimir loads

Grahic Jump Location
Fig. 1

Schematic of the MLGNR doubly-clamped actuator

Grahic Jump Location
Fig. 3

Coefficient of thermal expansion of the monolayer graphene, triple-layer graphene, and the graphite as a function of temperature. The same markers with different colors represent the number of graphene/graphite samples tested.

Grahic Jump Location
Fig. 4

Variation of the proposed CTE function, Eq. (9), as a function of temperature for the monolayer graphene, few-layered graphene, and many-layered graphene (graphite)

Grahic Jump Location
Fig. 5

Theoretical and measured pull-in voltages of the doubly-clamped microbeams with different beam lengths

Grahic Jump Location
Fig. 6

Comparison of the pull-in voltages of [111] Al and [100] Si doubly-clamped nanobeams without Casimir force obtained by the present method and the AEM [51]

Grahic Jump Location
Fig. 7

Effect of the Casimir force on the pull-in voltages of [111] Al and [100] Si doubly-clamped nanobeams using the continuum surface elasticity model

Grahic Jump Location
Fig. 8

Effect of the number of GNRs on the pull-in voltage and pull-in displacement (at the middle point) of MLGNR doubly-clamped electrostatic nanoactuators when the residual, thermal, and surface effects are neglected

Grahic Jump Location
Fig. 9

Effect of the temperature on the pull-in voltage of MLGNR doubly-clamped electrostatic nanoactuators when the residual and surface effects are neglected

Grahic Jump Location
Fig. 10

Variation of the residual surface stress and the surface elastic modulus versus the pull-in voltages of the MLGNR electrostatic nanoactuators when (a) n=100 and (b) n=300




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In