0
Research Papers

Thermoelastic Properties of a Novel Fuzzy Fiber-Reinforced Composite

[+] Author and Article Information
M. C. Ray

e-mail: mcray@mech.iitkgp.ernet.in
Department of Mechanical Engineering,
Indian Institute of Technology,
Kharagpur 721302, India

Manuscript received August 6, 2012; final manuscript received January 15, 2013; accepted manuscript posted February 19, 2013; published online August 21, 2013. Assoc. Editor: Anthony Waas.

J. Appl. Mech 80(6), 061011 (Aug 21, 2013) (10 pages) Paper No: JAM-12-1372; doi: 10.1115/1.4023691 History: Received August 06, 2012; Revised January 15, 2013; Accepted February 19, 2013

The effective thermoelastic properties of a fuzzy fiber-reinforced composite (FFRC) have been estimated by employing the generalized method of cells approach and the Mori–Tanaka method. The novel constructional feature of this fuzzy fiber-reinforced composite is that the uniformly aligned carbon nanotubes (CNTs) are radially grown on the circumferential surface of the horizontal carbon fibers. Effective thermoelastic properties of the fuzzy fiber-reinforced composite estimated by the generalized method of cells approach have been compared with those predicted by the Mori–Tanaka method. The present work concludes that the axial thermal expansion coefficient of the fuzzy fiber-reinforced composite slightly increases for the lower values of the carbon fiber volume fraction, whereas the transverse thermal expansion coefficient of the fuzzy fiber-reinforced composite significantly decreases over those of the composite without CNTs. Also, the results demonstrate that the effect of temperature variation on the effective thermal expansion coefficients of the fuzzy fiber-reinforced composite is negligible.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Iijima, S., 1991, “Helical Microtubules of Graphitic Carbon,” Nature, 354, pp. 56–58. [CrossRef]
Ruoff, R. S., and Lorents, D. C., 1995, “Mechanical and Thermal Properties of Carbon Nanotubes,” Carbon, 33(7), pp. 925–930. [CrossRef]
Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., 1996, “Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes,” Nature, 381, pp. 678–680. [CrossRef]
Lu, J. P., 1997, “Elastic Properties of Carbon Nanotubes and Nanoropes,” Phys. Rev. Lett., 79(7), pp. 1297–1300. [CrossRef]
Popov, V. N., Van Doren, V. E., and Balkanski, M., 2000, “Elastic Properties of Single-Walled Carbon Nanotubes,” Phys. Rev. B, 61(4), pp. 3078–3084. [CrossRef]
Li, C., and Chou, T. W., 2003, “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes,” Int. J. Solids Struct., 40(10), pp. 2487–2499. [CrossRef]
Shen, L., and Li, J., 2004, “Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes,” Phys. Rev. B, 69, p. 045414. [CrossRef]
Kirtania, S., and Chakraborty, D., 2007, “Finite Element Based Characterization of Carbon Nanotubes,” J. Reinf. Plast. Compos., 26(15), pp. 1557–1570. [CrossRef]
Batra, R. C., and Sears, A., 2007, “Uniform Radial Expansion/Contraction of Carbon Nanotubes and Their Transverse Elastic Moduli,” Modell. Simul. Mater. Sci. Eng., 15, pp. 835–844. [CrossRef]
Batra, R. C., and Gupta, S. S., 2008, “Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes,” ASME J. Appl. Mech., 75(6), p. 061010. [CrossRef]
Cheng, H. C., Liu, Y. L., Hsu, Y. C., and Chen, W. H., 2009, “Atomistic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nanotubes,” Int. J. Solids Struct., 46, pp. 1695–1704. [CrossRef]
Tsai, J. L., Tzeng, S. H., and Chiu, Y. T., 2010, “Characterizing Elastic Properties of Carbon Nanotube/Polyimide Nanocomposites Using Multi-Scale Simulation,” Composites, Part B, 41(1), pp. 106–115. [CrossRef]
Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D., and Zhu, S., 1999, “Study on Poly(Methyl Methacrylate)/Carbon Nanotube Composites,” Mater. Sci. Eng. A, 271, pp. 395–400. [CrossRef]
Haggenmueller, R., Gommans, H. H., Rinzler, A. G., Fischer, J. E., and Winey, K. I., 2000, “Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods,” Chem. Phys. Lett., 330, pp. 219–225. [CrossRef]
Odegard, G. M., Gates, T. S., Wise, K. E., Park, C., and Siochi, E. J., 2003, “Constitutive Modeling of Nanotube-Reinforced Polymer Composites,” Compos. Sci. Technol., 63(11), pp. 1671–1687. [CrossRef]
Liu, Y. J., and Chen, X. L., 2003, “Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element,” Mech. Mater., 35, pp. 69–81. [CrossRef]
Lopez Manchado, M. A., Valentini, L., Biagiotti, J., and Kenny, J, M., 2005, “Thermal and Mechanical Properties of Single-Walled Carbon Nanotubes-Polypropylene Composites Prepared by Melt Processing,” Carbon, 43(7), pp. 1499–1505. [CrossRef]
Gao, X. L., and Li, K., 2005, “A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites,” Int. J. Solids Struct., 42, pp. 1649–1667. [CrossRef]
Seidel, G. D., and Lagoudas, D, C., 2006, “Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composites,” Mech. Mater., 38, pp. 884–907. [CrossRef]
Ray, M. C., and Batra, R. C., 2009, “Effective Properties of Carbon Nanotube and Piezoelectric Fiber-Reinforced Hybrid Smart Composites,” ASME J. Appl. Mech., 76(3), p. 034503. [CrossRef]
Tans, S. J., Verschueren, A. R. M., and Dekker, C., 1998, “Room-Temperature Transistor Based on a Single Carbon Nanotube,” Nature, 393(6680), pp. 49–52. [CrossRef]
Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., 2001, “Logic Circuits With Carbon Nanotube Transistors,” Science, 294(5545), pp. 1317–1320. [CrossRef] [PubMed]
Derycke, V., Martel, R., Appenzeller, J., and Avouris, Ph., 2001, “Controlling Doping and Carrier Injection in Carbon Nanotube Transistors,” Appl. Phys. Lett., 80(15), pp. 2773–2775. [CrossRef]
Leonard, F., and Tersoff, J., 2002, “Multiple Functionality in Nanotube Transistors,” Phys. Rev. Lett., 88(25), p. 258302. [CrossRef] [PubMed]
Bandow, S., 1997, “Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-Ray Diffraction,” Jpn. J. Appl. Phys., Part 2, 36(10B), pp. 1403–1405. [CrossRef]
Yosida, Y., 2000, “High-Temperature Shrinkage of Single-Walled Carbon Nanotube Bundles Up to 1600K,” J. Appl. Phys., 87(7), pp. 3338–3341. [CrossRef]
Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Kataura, H., Suzuki, S., Achiba, Y., Nishibori, E., Takata, M., Sakata, M., Fujiwara, A., and Suematsu, H., 2001, “Thermal Expansion of Single-Walled Carbon Nanotube (SWCNT) Bundles: X-Ray Diffraction Studies,” Phys. Rev. B, 64(24), p. 241402. [CrossRef]
Jiang, H., Liu, B., Huang, Y., and Hwang, K. C., 2004, “Thermal Expansion of Single Wall Carbon Nanotubes,” ASME J. Eng. Mater. Technol., 126(3), pp. 265–270. [CrossRef]
Kwon, Y., Berber, S., and Tomanek, D., 2004, “Thermal Contraction of Carbon Fullerenes and Nanotubes,” Phys. Rev. Lett., 92(1), p. 015901. [CrossRef] [PubMed]
Bower, C., Zhu, W., Jin, S., and Zhou, O., 2000, “Plasma-Induced Alignment of Carbon Nanotubes,” Appl. Phys. Lett., 77(6), pp. 830–832. [CrossRef]
Qian, D., Dickey, E. C., Andrews, R., and Rantell, T., 2000, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Appl. Phys. Lett., 76(20), pp. 2868–2870. [CrossRef]
Zhao, Z. G., Ci, L. J., Cheng, H. M., and Bai, J. B., 2005, “The Growth of Multi-Walled Carbon Nanotubes With Different Morphologies on Carbon Fibers,” Carbon, 43, pp. 651–673. [CrossRef]
Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P. M., and Ghasemi-Nejhad, M. N., 2006, “Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests,” Nature Mater., 5, pp. 457–462. [CrossRef]
Qiu, J., Zhang, C., Wang, B., and Liang, R., 2007, “Carbon Nanotube Integrated Multifunctional Multiscale Composites,” Nanotechnology, 18, p. 275708. [CrossRef]
Mathur, R. B., Chatterjee, S., and Singh, B. P., 2008, “Growth of Carbon Nanotubes on Carbon Fiber Substrates to Produce Hybrid/Phenolic Composites With Improved Mechanical Properties,” Compos. Sci. Technol., 68, pp. 1608–1615. [CrossRef]
Garcia, E. J., Wardle, B. L., Hart, A. J., and Yamamoto, N., 2008, “Fabrication and Multifunctional Properties of a Hybrid Laminate With Aligned Carbon Nanotubes Grown In Situ,” Compos. Sci. Technol., 68(9), pp. 2034–2041. [CrossRef]
Zhang, Q., Liu, J., Sager, R., Dai, L., and Baur, J., 2009, “Hierarchical Composites of Carbon Nanotubes on Carbon Fiber: Influence of Growth Condition on Fiber Tensile Properties,” Compos. Sci. Technol., 69(5), pp. 594–601. [CrossRef]
Ray, M. C., Guzman de Villoria, R., and Wardle, B. L., 2009, “Load Transfer Analysis in Short Carbon Fibers With Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix,” J. Adv. Mater., 41(4), pp. 82–94.
Xiao, J., Dunham, S., Liu, P., Zhang, Y., Kocabas, C., Moh, L., Huang, Y., Hwang, K. C., Lu, C., Huang, W., and Rogers, J. A., 2009, “Alignment Controlled Growth of Single-Walled Carbon Nanotubes on Quartz Substrates,” Nano Lett., 9(12), pp. 4311–4319. [CrossRef] [PubMed]
Ray, M. C., 2010, “Concept for a Novel Hybrid Smart Composite Reinforced With Radially Aligned Zigzag Carbon Nanotubes on Piezoelectric Fibers,” Smart Mater. Struct., 19, p. 035008. [CrossRef]
Ray, M. C., 2010, “A Shear Lag Model of Piezoelectric Composite Reinforced With Carbon-Nanotubes-Coated Piezoelectric Fibers,” Int. J. Mech. Mater. Des., 6(2), pp. 147–155. [CrossRef]
Kundalwal, S. I., and Ray, M. C., 2011, “Micromechanical Analysis of Fuzzy Fiber-Reinforced Composites,” Int. J. Mech. Mater. Des., 7(2), pp. 149–166. [CrossRef]
Chatzigeorgiou, G., Efendiev, Y., and Lagoudas, D. C., 2011, “Homogenization of Aligned “Fuzzy Fiber” Composites,” Int. J. Solids Struct., 48, pp. 2668–2680. [CrossRef]
Aboudi, J., 1995, “Micromechanical Analysis of Thermo-Inelastic Multiphase Short-Fiber Composites,” Compos. Eng., 5(7), pp. 839–850. [CrossRef]
Mallik, N., and Ray, M. C., 2003, “Effective Coefficients of Piezoelectric Fiber-Reinforced Composites,” AIAA J., 41(4), pp. 704–710. [CrossRef]
Li, C., and Chou, T. W., 2003, “Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites,” J. Nanosci. Nanotechnol., 3, pp. 423–430. [CrossRef] [PubMed]
Li, Y., Waas, A. M., and Arruda, E. M., 2011, “A Closed-Form, Hierarchical, Multi-Interphase Model for Composites–Derivation, Verification and Application to Nanocomposites,” J. Mech. Phys. Solids, 59, pp. 43–63. [CrossRef]
Li, Y., Waas, A. M., and Arruda, E. M., 2011, “The Effects of the Interphase and Strain Gradients on the Elasticity of Layer by Layer (LBL) Polymer/Clay Nanocomposites,” Int. J. Solids Struct., 48, pp. 1044–1053. [CrossRef]
Mori, T., and Tanaka, K., 1973, “Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions,” Acta Metall., 21(5), pp. 571–574. [CrossRef]
Qui, Y. P., and Weng, G. J., 1990, “On the Application of Mori-Tanaka's Theory Involving Transversely Isotropic Spheroidal Inclusions,” Int. J. Eng. Sci., 28(11), pp. 1121–1137. [CrossRef]
Laws, N., 1973, “On the Thermostatics of Composite Materials,” J. Mech. Phys. Solids, 21(1), pp. 9–17. [CrossRef]
Li, J. Y., and Dunn, M. L., 1998, “Anisotropic Coupled-Field Inclusion and Inhomogeneity Problems,” Philos. Mag. A, 77(5), pp. 1341–1350. [CrossRef]
Honjo, K., 2007, “Thermal Stresses and Effective Properties Calculated for Fiber Composites Using Actual Cylindrically-Anisotropic Properties of Interfacial Carbon Coating,” Carbon, 45(4), pp. 865–872. [CrossRef]
Villeneuve, J. F., Naslain, R., Fourmeaus, R., and Sevely, J., 1993, “Longitudinal/Radial Thermal Expansion and Poisson Ratio of Some Ceramic Fibers as Measured by Transmission Electron Microscopy,” Compos. Sci. Technol., 49(1), pp. 89–103. [CrossRef]
Peters, S, T., 1998, Handbook of Composites, Chapman and Hall, London.
Shen, H, S., 2001, “Hygrothermal Effects on the Postbuckling of Shear Deformable Laminated Plates,” Int. J. Mech. Sci., 43(5), pp. 1259–1281. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of a lamina made of the fuzzy fiber-reinforced composite

Grahic Jump Location
Fig. 2

Fuzzy fiber with CNTs radially grown on its surface

Grahic Jump Location
Fig. 3

Transverse and longitudinal cross-sections of the composite fuzzy fiber

Grahic Jump Location
Fig. 4

Modeling of the fuzzy fiber-reinforced composite and its phases

Grahic Jump Location
Fig. 5

Transverse cross-sections of the composite fuzzy fiber with unwound and wound polymer matrix nanocomposite

Grahic Jump Location
Fig. 6

Representative unit cell of the polymer matrix nanocomposite

Grahic Jump Location
Fig. 7

Hexagonal packing array comprised of composite fuzzy fibers

Grahic Jump Location
Fig. 8

Variation of the maximum CNT volume fraction with the carbon fiber volume fraction in the fuzzy fiber-reinforced composite

Grahic Jump Location
Fig. 9

Variation of the axial CTE (α1PMNC) of the polymer matrix nanocomposite with the carbon fiber volume fraction in the fuzzy fiber-reinforced composite

Grahic Jump Location
Fig. 10

Variation of the transverse CTE (α2PMNC) of the polymer matrix nanocomposite with the carbon fiber volume fraction in the fuzzy fiber-reinforced composite

Grahic Jump Location
Fig. 11

Variation of the axial CTE (α1) of the fuzzy fiber-reinforced composite with the carbon fiber volume fraction in the fuzzy fiber-reinforced composite

Grahic Jump Location
Fig. 12

Variation of the transverse CTE (α2) of the fuzzy fiber-reinforced composite with the carbon fiber volume fraction in the fuzzy fiber-reinforced composite

Grahic Jump Location
Fig. 13

Variation of the axial CTE (α1) of the fuzzy fiber-reinforced composite with the temperature deviation

Grahic Jump Location
Fig. 14

Variation of the transverse CTE (α2) of the fuzzy fiber-reinforced composite with the temperature deviation

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In