Carrera, E., 2001, “Developments, Ideas and Evaluations Based Upon Reissner's Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells,” ASME Appl. Mech. Rev., 54(4), pp. 301–329.

[CrossRef]Savoia, M., and Reddy, J. N., 1995, “Three-Dimensional Thermal Analysis of Laminated Composite Plates,” Int. J. Sol. Str., 32(5), pp. 593–608.

[CrossRef]Carrera, E., 1997, “Cz0-Requirements-Models for the Two Dimensional Analysis of Multilayered Structures,” Compos. Str., 37, pp. 373–384.

[CrossRef]Demasi, L., 2012, “Partially Zig-Zag Advanced Higher Order Shear Deformation Theories Based on the Generalized Unified Formulation,” Compos. Str., 94(2), pp. 363–375.

[CrossRef]Carrera, E., 2003, “Historical Review of Zig-Zag Theories for Multilayered Plates and Shells,” ASME Appl. Mech. Rev., 56, pp. 287–208.

[CrossRef]Lekhnitskii, S. G., 1935, “Strength Calculation of Composite Beams,” Vestnik Inzhen i Teknikov, 9, pp. 137–148.

Ambartsumian, S. A., 1957, “Analysis of Two-Layer Orthotropic Shells,” Investiia Akad Nauk SSSR, Ot Tekh Nauk, 7, pp. 93–106.

Liu, D., and Li., X., 1996, “An Overall View of Laminate Theories Based on Displacement Hypothesis,” J. Compos. Mat., 30(14), pp. 1539–1561.

[CrossRef]Reissner, E., 1984, “On a Certain Mixed Variational Theorem and a Proposed Application,” Int. J. Num. Meth. Eng., 20(7), pp. 1366–1368.

[CrossRef]Reddy, J. N., 1997, *Mechanics of Laminated Composite Plates*, CRC Press, New York.

Reissner, E., and Stavsky, Y., 1961, “Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates,” ASME J. Appl. Mech., 28(3), pp. 402–408.

[CrossRef]Reissner, E., 1945, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” ASME J. Appl. Mech., 12, pp. 68–77.

Mindlin, R. D., 1951, “Influence of Rotatory Inertia and Shear Deformation on Flexural Motions of Isotropic Elastic Plates,” ASME J. Appl. Mech., 18, pp. 31–38.

Whitney, J. M., and Pagano, N. J., 1970, “Shear Deformation in Heterogeneous Anisotropic Plates,” ASME J. Appl. Mech., 37(4), pp. 1031–1036.

[CrossRef]Reissner, E., 1985, “Reflections on the Theory of Elastic Plates,” ASME Appl. Mech. Rev., 38(11), pp. 1453–1464.

[CrossRef]Librescu, L., Khdeir, A., and Reddy, J. N., 1987, “A Comprehensive Analysis of the State of Stress of Elastic Anisotropic Flat Plates Using Refined Theories,” Act. Mech., 70, pp. 57–81.

[CrossRef]Reddy, J. N., 1984, “A Simple Higher-Order Theory for Laminated Composite Plates,” ASME J. Appl. Mech., 51(4), pp. 745–752.

[CrossRef]Tessler, A., 1993, “An Improved Plate Theory of {1,2}-Order for Thick Composite Laminates,” Int. J. Sol. Str., 30(7), pp. 981–1000.

[CrossRef]Cook, G. M., and Tessler, A., 1998, “A {3,2}-Order Bending Theory for Laminated Composite and Sandwich Beams,” Compos. B. Eng., 29(5), pp. 565–576.

[CrossRef]Barut, A., Madenci, E., Anderson, T., and Tessler, A., 2002, “Equivalent Single-Layer Theory for a Complete Stress Field in Sandwich Panels Under Arbitrarily Distributed Loading,” Compos. Str., 58(4), pp. 483–495.

[CrossRef]Touratier, M., 1991, “An Efficient Standard Plate Theory,” Int. J. Eng. Sci., 29, pp. 901–916.

[CrossRef]Reddy, J. N., 1987, “A Generalization of Two-Dimensional Theories of Laminated Composite Plates,” Comm. Appl. Num. Meth., 3(3), pp. 173–180.

[CrossRef]Lu, X., and Liu, D., 1992, “An Interlaminar Shear Stress Continuity Theory for Both Thin and Thick Composite Laminates,” ASME J. Appl. Mech., 59(3), pp. 502–509.

[CrossRef]Di Sciuva, M., 1984, “A Refinement of the Transverse Shear Deformation Theory for Multilayered Orthotropic Plates,” Proc. AIDAA National Congress, 1983. Also in: L'aerotecnica missili e spazio, 62, pp. 84–92.

Di Sciuva, M., 1984, “A Refined Transverse Shear Deformation Theory for Multilayered Anisotropic Plates,” Atti Accademia delle Scienze di Torino, 118, pp. 279–295.

Di Sciuva, M., 1985, “Development of an Anisotropic, Multilayered, Shear-Deformable Rectangular Plate Element,” Comp. Str., 21(4), pp. 789–796.

[CrossRef]Di Sciuva, M., 1985, “Evaluation of Some Multilayered, Shear-Deformable Plate Elements,” Proc. 26th Structures, Structural Dynamics and Materials Conference, Orlando, FL, April 15–17, AIAA/ASME/ASCE/AHS-Paper 85-0717, pp. 394–400.

Di Sciuva, M., 1986, “Bending, Vibration and Buckling of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of a New Displacement Model,” J. Sound Vib., 105(3), pp. 425–442.

[CrossRef]Di Sciuva, M., 1987, “An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates,” ASME J. Appl. Mech., 54(3), pp. 589–596.

[CrossRef]Di Sciuva, M., 1990, “Further Refinement in the Transverse Shear Deformation Theory for Multilayered Composite Plates,” Atti Accademia delle Scienze di Torino, 124(5–6), pp. 248–268.

Di Sciuva, M., 1992, “Multilayered Anisotropic Plate Models With Continuous Interlaminar Stresses,” Compos. Str., 22(3), pp. 149–167.

[CrossRef]Di Sciuva, M., 1995, “A Third-Order Triangular Multilayered Plate Finite Element With Continuous Interlaminar Stresses,” Int. J. Num. Meth. Eng., 38, pp. 1–26.

[CrossRef]Di Sciuva, M., Gherlone, M., and Librescu, L., 2002, “Implications of Damaged Interfaces and of Other Non-Classical Effects on the Load Carrying Capacity of Multilayered Composite Shallow Shells,” Int. J. Nonlin. Mech., 37(4–5), pp. 851–867.

[CrossRef]Cho, M., and Parmenter, R. R., 1993, “Efficient Higher Order Composite Plate Theory for General Lamination Configurations,” AIAA J., 31(7), pp. 1299–1306.

[CrossRef]Cho, M., and Kim, J. H., 1996, “Postprocess Method Using Displacement Field of Higher Order Laminated Composite Plate Theory,” AIAA J., 34(2), pp. 362–368.

[CrossRef]Cho, M., and Choi, Y. J., 2001, “A New Postprocessing Method for Laminated Composites of General Laminations Configurations,” Compos. Str., 54, pp. 397–406.

[CrossRef]Cho, M., and Kim, J. S., 1996, “Four-Noded Finite Element Post-Process Method Using a Displacement Field of Higher-Order Laminated Composite Plate Theory,” Comp. Str., 61(2), pp. 283–290.

[CrossRef]Cho, M., and Kim, J. S., 1997, “Improved Mindlin Plate Stress Analysis for Laminated Composites in Finite Element Method,” AIAA J., 35(3), pp. 587–590.

[CrossRef]Cho, M., and Kim, J. S., 2005, “Enhanced First-Order Shear Deformation Theory for Laminated and Sandwich Plates,” ASME J. Appl. Mech., 72(6), pp. 809–817.

[CrossRef]Oh, J., Cho, M., and Kim, J. S., 2007, “Enhanced Lower-Order Shear Deformation Theory for Fully Coupled Electro-Thermomechanical Smart Laminated Plates,” Sma. Mat. Str., 16, pp. 2229–2241.

[CrossRef]Kim, J. S. J., Oh, J., and Cho, M., 2011, “Efficient Analysis of Laminated Composite and Sandwich Plates With Interfacial Imperfections,” Compos. B. Eng., 42, pp. 1066–1075.

[CrossRef]Averill, R. C., 1994, “Static and Dynamic Response of Moderately Thick Laminated Beams With Damage,” Compos. Eng., 4(4), pp. 381–395.

[CrossRef]Averill, R. C., and Yip, Y. C., 1996, “Development of Simple, Robust Finite Elements Based on Refined Theories for Thick Laminated Beams,” Comp. Str., 59(3), pp. 529–546.

[CrossRef]Icardi, U., 2001, “Large Bending Actuator Made With SMA Contractile Wires: Theory, Numerical Simulation and Experiments,” Compos. B. Eng., 32, pp. 259–267.

[CrossRef]Icardi, U., 2001, “Higher-Order Zig-Zag Model for Analysis of Thick Composite Beams With Inclusion of Transverse Normal Stress and Sublaminates Approximation,” Compos. B. Eng., 32, pp. 343–354.

[CrossRef]Di Sciuva, M., Icardi, U., Miraldi, E., and Ruvinetti, G., 2001, “Holographic Interferometry Assessment of Stress Distribution in Sandwich Beams in Bending,” Compos. B. Eng., 32, pp. 175–184.

[CrossRef]Icardi, U., 2005, “

*C*^{0} Plate Element for Global/Local Analysis of Multilayered Composites, Based on a 3D Zig-Zag Model and Strain Energy Updating,” Int. J. Mech. Sci., 47, pp. 1561–1594.

[CrossRef]Icardi, U., and Ferrero, L., 2011, “Multilayered Shell Model With Variable Representation of Displacements Across the Thickness,” Compos. B. Eng., 42, pp. 18–26.

[CrossRef]Kapuria, S., Dumir, P. C., and Jain, N. K., 2004, “Assessment of Zigzag Theory for Static Loading, Buckling, Free and Forced Response of Composite and Sandwich Beams,” Compos. Str., 64, pp. 317–327.

[CrossRef]Kapuria, S., Ahmed, A., and Dumir, P. C., 2004, “Static and Dynamic Thermo-Electro-Mechanical Analysis of Angle-Ply Hybrid Piezoelectric Beams Using an Efficient Coupled Zigzag Theory,” Compos. Sci. Tech., 64, pp. 2463–2475.

[CrossRef]Kapuria, S., Bhattacharyya, M., and Kumar, A. N., 2006, “Assessment of Coupled 1D Models for Hybrid Piezoelectric Layered Functionally Graded Beams,” Compos. Str., 72, pp. 455–468.

[CrossRef]Kapuria, S., and Kulkarni, S.D., 2008, “An Efficient Quadrilateral Element Based on Improved Zigzag Theory for Dynamic Analysis of Hybrid Plates With Electroded Piezoelectric Actuators and Sensors,” J. Sound Vib., 315, pp. 118–145.

[CrossRef]Vidal, P., and Polit, O., 2006, “A Thermo Mechanical Finite Element for the Analysis of Rectangular Laminated Beams,” Fin. Elem. Anal. Des., 42, pp. 868–883.

[CrossRef]Vidal, P., and Polit, O., 2008, “A Family of Sinus Finite Elements for the Analysis of Rectangular Laminated Beams,” Compos. Str., 84, pp. 56–72.

[CrossRef]Vidal, P., and Polit, O., 2010, “Vibration of Multilayered Beams Using Sinus Finite Elements With Transverse Normal Stress,” Compos. Str., 92, pp. 1524–1534.

[CrossRef]Arya, H., Shimpi, R. P., and Naik, N. K., 2002, “A Zigzag Model for Laminated Composite Beams,” Compos. Str., 56, pp. 21–24.

[CrossRef]Arya, H., 2003, “A New Zig-Zag Model for Laminated Composite Beams: Free Vibration Analysis,” (Letter to the Editor), J. Sound Vib., 264, pp. 485–490.

[CrossRef]Chakrabarti, A., and Sheikh, A. H., 2005, “Buckling of Laminated Sandwich Plates Subjected to Partial Edge Compression,” Int. J. Mech. Sci., 47, pp. 418–436.

[CrossRef]Chakrabarti, A., and Sheikh, A. H., 2006, “Dynamic Instability of Laminated Sandwich Plates Using an Efficient Finite Element Model,” Th. Wal. Str., 44, pp. 57–68.

[CrossRef]Topdar, P., Sheikh, A. H., and Dhang, N., 2007, “Vibration Characteristics of Composite/Sandwich Laminates With Piezoelectric Layers Using a Refined Hybrid Plate Model,” Int. J. Mech. Sci., 49, pp. 1193–1203.

[CrossRef]Pandit, M. K., Singh, B. N., and Sheikh, A. H., 2008, “Buckling of Laminated Sandwich Plates With Soft Core Based on an Improved Higher Order Zigzag Theory,” Th. Wal. Str., 46, pp. 1183–1191.

[CrossRef]Chakrabarti, A., Chalak, H. D., Iqbal, M. A., and Sheikh, A. H., 2011, “A New FE Model Based on Higher Order Zigzag Theory for the Analysis of Laminated Sandwich Beam With Soft Core,” Compos. Str., 93, pp. 271–279.

[CrossRef]Zhen, W., and Wanji, C., 2010, “A

*C*^{0}-Type Higher-Order Theory for Bending Analysis of Laminated Composite and Sandwich Plates,” Compos. Str., 92, pp. 653–661.

[CrossRef]Lo, S. H., Zhen, W., Sze, K. Y., and Wanji, C., 2011, “An Improved In-Plane Displacement Model for the Stability Analysis of Laminated Composites With General Lamination Configurations,” Compos. Str., 93, pp. 1584–1594.

[CrossRef]Xiaohui, R., Wanji, C., and Zhen, W., 2012, “A

*C*^{0}-Type Zig–Zag Theory and Finite Element for Laminated Composite and Sandwich Plates With General Configurations,” Arch. Appl. Mech., 82, pp. 391–406.

[CrossRef]Akhras, G., and Li, W., 2007, “Spline Finite Strip Analysis of Composite Plates Based on Higher-Order Zigzag Composite Plate Theory,” Compos. Str., 78, pp. 112–118.

[CrossRef]Akhras, G., and Li, W., 2011, “Stability and Free Vibration Analysis of Thick Piezoelectric Composite Plates Using Spline Finite Strip Method,” Int. J. Mech. Sci., 53, pp. 575–584.

[CrossRef]Tessler, A., Di Sciuva, M., and Gherlone, M., 2007, “A Refined Linear Zigzag Theory for Composite Beams: Reformulation of Zigzag Function and Shear Stress Constraints,” Proc. 6th International Symposium on Advanced Composites and Applications for the New Millennium, Corfù, Greece, May 16–18.

Tessler, A., Di Sciuva, M., and Gherlone, M., 2007, “Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA/TP-2007-215086.

Tessler, A., Di Sciuva, M., and Gherlone, M., 2008, “A Shear-Deformation Theory for Composite and Sandwich Plates Using Improved Zigzag Kinematics,” Proc. 9th International Conference on Computational Structures Technology, Athens, Greece, September 2–5.

Tessler, A., Di Sciuva, M., and Gherlone, M., 2009, “A Refined Zigzag Beam Theory for Composite and Sandwich Beams,” J. Compos. Mat., 43(9), pp. 1051–1081.

[CrossRef]Tessler, A., Di Sciuva, M., and Gherlone, M., 2009, “Refined Zigzag Theory for Laminated Composite and Sandwich Plates,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA/TP-2009-215561.

Di Sciuva, M., Gherlone, M., and Tessler, A., 2010, “A Robust and Consistent First-Order Zigzag Theory for Multilayered Beams,” *Advances in Mathematical Modelling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume*, R.Gilat and L.Banks-Sills, eds., Springer, New York, pp. 255–268.

Tessler, A., Di Sciuva, M., and Gherlone, M., 2010, “A Consistent Refinement of First-Order Shear-Deformation Theory for Laminated Composite and Sandwich Plates Using Improved Zigzag Kinematics,” J. Mech. Mat. Str., 5(2), pp. 341–367.

[CrossRef]Tessler, A., Di Sciuva, M., and Gherlone, M., 2010, “Refined Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates: A Homogeneous-Limit Methodology for Zigzag Function Selection,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA/TP-2010-216214.

Tessler, A., Di Sciuva, M., and Gherlone, M., 2011, “A Homogeneous Limit Methodology and Refinements of Computationally Efficient Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates,” Num. Meth. Part. Diff. Eqs., 27(1), pp. 208–229.

[CrossRef]Gherlone, M., Tessler, A., and Di Sciuva, M., 2011, “

*C*^{0} Beam Elements Based on the Refined Zigzag Theory for Multilayered Composite and Sandwich Laminates,” Compos. Str., 93(11), pp. 2882–2894.

[CrossRef]Versino, D., Mattone, M., Gherlone, M., Tessler, A., and Di Sciuva, M., 2013, “An Efficient,

*C*^{0} Triangular Elements Based on the Refined Zigzag Theory for Multilayered Composite and Sandwich Plates,” Compos. B. Eng., 44B(1), pp. 218–230.

[CrossRef]Murakami, H., 1986, “Laminated Composite Plate Theory With Improved In-Plane Responses,” ASME J. Appl. Mech., 53(3), pp. 661–666.

[CrossRef]Toledano, A., and Murakami, H., 1987, “A High-Order Laminated Plate Theory With Improved In-Plane Responses,” Int. J. Sol. Str., 23(1), pp. 111–131.

[CrossRef]Toledano, A., and Murakami, H., 1987, “A Composite Plate Theory for Arbitrary Laminate Configurations,” ASME J. Appl. Mech., 54(1), pp. 181–189.

[CrossRef]Carrera, E., 2004, “On the Use of the Murakami's Zig-Zag Function in the Modeling of Layered Plates and Shells,” Comp. Str., 82, pp. 541–554.

[CrossRef]Murakami, H., Maewal, A., and Hegemier, G. A., 1981, “A Mixture Theory With a Director for Linear Elastodynamics of Periodically Laminated Media,” Int. J. Sol. Str., 17, pp. 155–173.

[CrossRef]Pagano, N. J., 1969, “Exact Solutions for Composite Laminates in Cylindrical Bending,” J. Compos. Mat., 3, pp. 398–411.

[CrossRef]Carrera, E., 2000, “A Priori vs. A Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates,” Compos. Str., 48, pp. 245–260.

[CrossRef]Carrera, E., 2000, “An Assessment of Mixed and Classical Theories on Global and Local Response of Multilayered Orthotropic Plates,” Compos. Str., 50, pp. 183–198.

[CrossRef]Demasi, L., 2005, “Refined Multilayered Plate Elements Based on Murakami Zig-Zag Function,” Compos. Str., 70, pp. 308–316.

[CrossRef]Brischetto, S., Carrera, E., and Demasi, L., 2009, “Improved Bending Analysis of Sandwich Plate Using a Zig-Zag Function,” Compos. Str., 89, pp. 408–415.

[CrossRef]Brischetto, S., Carrera, E., and Demasi, L., 2009, “Improved Response of Unsymmetrically Laminated Sandwich Plates by Using Zig-Zag Functions,” J. Sand. Str. Mat., 11, pp. 257–267.

[CrossRef]Carrera, E., and Brischetto, S., 2009, “A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates,” Appl. Mech. Rev., 62, pp. 1–17.

[CrossRef]Ferreira, A. J. M., Roque, C. M. C., Carrera, E., Cinefra, M., and Polit, O., 2011, “Radial Basis Functions Collocation and a Unified Formulation for Bending, Vibration and Buckling Analysis of Laminated Plates, According to a Variation of Murakami's Zig-Zag Theory,” Eur. J. Mech. A Sol., 30, pp. 559–570.

[CrossRef]Rodrigues, J. D., Roque, C. M. C., Ferreira, A. J. M., Carrera, E., and Cinefra, M., 2011, “Radial Basis Functions–Finite Differences Collocation and a Unified Formulation for Bending, Vibration and Buckling Analysis of Laminated Plates, According to Murakami's Zig-Zag Theory,” Compos. Str., 93, pp. 1613–1620.

[CrossRef]Ali, J. S. M., Bhaskar, K., and Varadan, T. K., 1999, “A New Theory for Accurate Thermal/Mechanical Flexural Analysis of Symmetric Laminated Plates,” Compos. Str., 45, pp. 227–232.

[CrossRef]Umasree, P., and Bhaskar, K., 2006 “Analytical Solutions for Flexure of Clamped Rectangular Cross-Ply Plates Using an Accurate Zig–Zag Type Higher-Order Theory,” Compos. Str., 74, pp. 426–439.

[CrossRef]Ganapathi, M., and Mackecha, D. P., 2001, “Free Vibration Analysis of Multi-Layered Composite Laminates Based on an Accurate Higher-Order Theory,” Compos. B. Eng., 32, pp. 535–543.

[CrossRef]Ganapathi, M., Patel, B. P., and Pawargi, D. S., 2002, “Dynamic Analysis of Laminated Cross-Ply Composite Non-Circular Thick Cylindrical Shells Using Higher-Order Theory,” Int. J. Sol. Str., 39, pp. 5945–5962.

[CrossRef]Ganapathi, M., Patel, B. P., and Makhecha, D. P., 2004, “Nonlinear Dynamic Analysis of Thick Composite/Sandwich Laminates Using an Accurate Higher-Order Theory,” Compos. B. Eng., 35, pp. 345–355.

[CrossRef]D'Ottavio, M., Ballhause, D., Kroplin, B., and Carrera, E., 2006, “Closed-Form Solutions for the Free-Vibration Problem of Multilayered Piezoelectric Shells,” Comp. Str., 84, pp. 1506–1518.

[CrossRef]D'Ottavio, M., Ballhause, D., Wallmersperger, T., and Kroplin, B., 2006, “Considerations on Higher-Order Finite Elements for Multilayered Plates Based on a Unified Formulation,” Comp. Str., 84, pp. 1222–1235.

[CrossRef]Vidal, P., and Polit, O., 2011, “A Sine Finite Element Using a Zig-Zag Function for the Analysis of Laminated Composite Beams,” Compos. B. Eng., 42, pp. 1671–1682.

[CrossRef]