0
Research Papers

Effective Electromechanical Properties of 622 Piezoelectric Medium With Unidirectional Cylindrical Holes

[+] Author and Article Information
Adair Roberto Aguiar

PPG Interunidades Bioengenharia
- EESC/FMRP/IQSC
Departamento de Engenharia de Estruturas, EESC
Universidade de São Paulo – USP
São Carlos, Brasil
e-mail: aguiarar@sc.usp.br

Julián Bravo Castillero

e-mail: jbravo@matcom.uh.cu

Reinaldo Rodríguez Ramos

e-mail: reinaldo@matcom.uh.cu
Facultad de Matemática y Computación
Universidad de La Habana
San Lázaro y L. Vedado
Habana 4, CP-10400, Cuba

Uziel Paulo da Silva

PPG Interunidades Bioengenharia
- EESC/FMRP/IQSC
Universidade de São Paulo – USP
São Carlos, Brasil
e-mail: uziel@sc.usp.br

1Corresponding author.

2See, for instance, [2] for the classification of crystal classes.

Manuscript received July 10, 2012; final manuscript received December 6, 2012; accepted manuscript posted January 22, 2013; published online July 19, 2013. Assoc. Editor: Martin Ostoja-Starzewski.

J. Appl. Mech 80(5), 050905 (Jul 19, 2013) (11 pages) Paper No: JAM-12-1316; doi: 10.1115/1.4023475 History: Received July 10, 2012; Revised December 06, 2012; Accepted January 22, 2013

The asymptotic homogenization method (AHM) yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The composite state is antiplane shear piezoelectric, that is, a coupled state of out-of-plane shear deformation and in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method. For this, the solutions are expanded in power series of Weierstrass elliptic functions, which contain coefficients that are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori–Tanaka approach. The results could be useful in bone mechanics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fukada, E., and Yasuda, I., 1957, “On the Piezoelectric Effect of Bone,” J. Phys. Soc. Jpn., 12, pp. 1158–1162. [CrossRef]
Nye, J. F., 1985, Physical Properties of Crystals: Their Representations by Tensors and Matrices, Oxford University Press, Oxford, UK.
Lang, S. B., 1970, “Ultrasonic Method for Measuring Elastic Coefficients of Bone and Results on Fresh and Dried Bovine Bones,” IEEE Trans. Biomed. Eng., 17(2), pp. 101–105. [CrossRef]
Katz, J. L., 1980, “Anisotropy of Young's Modulus of Bone,” Nature, 283, p. 106–107. [CrossRef]
Hollister, S. J., Fyhrie, D. P., Jepsen, K. J., and Goldstein, S. A., 1989, “Analysis of Trabecular Bone Micro-Mechanics Using Homogenization Theory With Comparison to Experimental Results,” J. Biomech., 22, p. 1025. [CrossRef]
Fyhrie, D. P., Jepsen, K. J., Hollister, S. J., and Goldstein, S. A., 1989, “Predicting Trabecular Bone Strength and Micro-Strain Using Homogenization Theory,” J. Biomech., 22, p. 1014. [CrossRef]
Van Buskirk, W. C., Cowin, S. C., and Ward, R. N., 1981, “Ultrasonic Measurement of Orthotropic Elastic Constants of Bovine Femoral Bone,” ASME J. Biomech. Eng., 103(2), pp. 67–72. [CrossRef]
Grimal, Q., Raum, K., Gerisch, A., and Laugier, P., 2009, “About the Determination of the Representative Volume Element Size in Compact Bone,” 19o Congrès Français de Mécanique.
Martin, R. B., and Burr, D. B., 1989, Structure, Function and Adaptation of Compact Bone, Raven Press, New York.
Bloebaum, R. D., and Isaacson, B. M., 2010, “Bone Bioelectricity: What Have We Learned in the Past 160 Years?,” J. Biomed. Mater. Res., 95A(4), pp. 1270–1279. [CrossRef]
Minary-Jolandan, M., and Min-Feng, Y., 2010, “Shear Piezoelectricity in Bone at the Nanoscale,” Appl. Phys. Lett., 97(15), p. 153127. [CrossRef]
Duarte, L. R., 1983, “The Stimulation of Bone Growth by Ultrasound,” Arch. Orthop. Trauma Surg., 101, pp. 153–159. [CrossRef]
Behari, J., 2009, Front Matter in Biophysical Bone Behavior: Principles and Applications, John Wiley, Chichester, UK.
The Institute of Radio Engineers, 1958, “IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants—The Electromechanical Coupling Factor,” Proc. IRE, 46(4), pp. 764–778. [CrossRef]
Ikeda, T., 1990, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, UK.
Bravo-Castillero, J., Guinovart-Diaz, R., Sabina, F. J., and Rodríguez-Ramos, R., 2001, “Closed-Form Expressions for the Effective Coefficients of a Fiber-Reinforced Composite With Transversely Isotropic Constituents—II. Piezoelectric and Square Symmetry,” Mech. Mater., 33, pp. 237–248. [CrossRef]
Bravo-Castillero, J., Rodríguez-Ramos, R., Guinovart-Díaz, R., Sabina, F. J., Aguiar, A. R., Silva, U. P., and Gómez-Muñoz, J. L., 2009, “Analytical Formulas for Electromechanical Effective Properties of 3-1 Longitudinally Porous Piezoelectric Materials,” Acta Mater., 57, pp. 795–803. [CrossRef]
Bravo-Castillero, J., Guinovart-Díaz, R., Rodríguez-Ramos, R., Mechkour, H., Brenner, R., Camacho-Montes, H., and Sabina, F. J., 2011, “Universal Relations and Effective Coefficients of Magneto-Electro-Elastic Perforated Structures,” Q. J. Mech. Appl. Math., 65, pp. 61–85. [CrossRef]
Lopez-Lopez, E., Sabina, F. J., Bravo-Castillero, J., Guinovart-Diaz, R., and Rodríguez-Ramos, R., 2005, “Overall Electromechanical Properties of a Binary Composite With 622 Symmetry Constituents. Antiplane Shear Piezoelectric State,” Int. J. Solids Struct., 42(21–22), pp. 5765–5777. [CrossRef]
Milgrom, M., and Shtrikman, S., 1989, “Linear Response of Two-Phase Composites With Cross-Moduli: Exact Universal Relations,” Phys. Rev. A, 40, p. 1568–1575. [CrossRef]
Mori, T., and Tanaka, K., 1973, “Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions,” Acta Metall., 21, p. 571–574. [CrossRef]
Armitage, J. V., and Eberlein, W. F., 2006, Elliptic Functions, Cambridge University Press, Cambridge, UK.
Grigolyuk, E. I., and Fil'shtinskii, L. A., 1970, Perforated Plates and Shells, Nauka, Moscow, in Russian.
Pobedrya, B. E., 1984, Mechanics of Composite Materials, Izd-vo MGU, Moscow, in Russian.
Markushevich, A., 1970, Teoría de las Funciones Analíticas, Mir, Moscow, in Spanish.
Yingzhen, L., Minggen, C., and Yi, Z., 2005, “Representation of the Exact Solution for Infinite System of Linear Equations,” Appl. Math. Comput., 168(1), pp. 636–650. [CrossRef]
Benveniste, Y., 1987, “A New Approach to the Application of Mori–Tanaka's Theory in Composite Materials,” Mech. Mater., 6, p. 147–157. [CrossRef]
Dunn, M. L., and Taya, M., 1993, “Micromechanics Predictions of the Effective Electroelastic Moduli of Piezoelectric Composites,” Int. J. Solids Struct., 30, pp. 161–175. [CrossRef]
Dunn, M. L., and Taya, M., 1993, “Electromechanical Properties of Porous Piezoelectric Ceramics,” J. Am. Ceram. Soc., 76, p. 1697–1706. [CrossRef]
Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. London Ser. A, 241, pp. 376–396. [CrossRef]
Zohdi, T. I., and Wriggers, P., 2008, An Introduction to Computational Micromechanics, 2nd ed. (Lecture Notes in Applied and Computational Mechanics, Vol. 20), Springer, Berlin.
Kar-Gupta, R., and Venkatesh, T. A., 2006, “Electromechanical Response of Porous Piezoelectric Materials,” Acta Mater., 54, pp. 4063–4078. [CrossRef]
Mikata, Y., 2000, “Determination of Piezoelectric Eshelby Tensor in Transverselyisotropic Piezoelectric Solids,” Int. J. Eng. Sci., 38, pp. 605–641. [CrossRef]
Berlincourt, D. A., Curran, D. R., and Jaffe, H., 1964, Piezoelectric and Piezomagnetic Materials and Their Function in Transducers, 2nd ed. (Physical Acoustics, Principles and Methods, Vol. 1, Part a3), Academic Press, New York, pp. 169–270.
Gundjian, A. A., and Chen, H. L., 1974, “Standardization and Interpretation of Electromechanical Properties of Bone,” IEEE Trans. Biomed. Eng., 21(3), pp. 177–182. [CrossRef]
Parnell, W. J., and Grimal, Q., 2009, “The Influence of Mesoscale Porosity on Cortical Bone Anisotropy. Investigations Via Asymptotic Homogenization,” J. R. Soc. Interface, 6, pp. 97–109. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Periodic structure of identical parallel empty circular cylinders. (b) Cell occupying the region R = R1∪R2 with R1∩R2 = ∅⁣.

Grahic Jump Location
Fig. 2

The effective material constants for the piezoelectric composite versus the area fraction V1. (a) Normalized elastic and dielectric permittivity constants. (b) Normalized piezoelectric constants.

Grahic Jump Location
Fig. 3

The ratio between the effective coupling factor σe and the coupling factor of the matrix σ versus the area fraction V1

Grahic Jump Location
Fig. 4

Effective material constants for the piezoelectric composite versus the piezoelectric coupling factor σ for V1 = 0.2. (a) Normalized elastic and dielectric permittivity constants. (b) Normalized piezoelectric constants.

Grahic Jump Location
Fig. 5

Effective material constants for the piezoelectric composite versus piezoelectric coupling factor σ for V1 = 0.785. (a) Normalized elastic and dielectric permittivity constants. (b) Normalized piezoelectric constants.

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In