Gupta, P. S., and Gupta, A. S., 1977, “Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing,” Can. J. Chem. Eng., 55, pp. 744–746.

[CrossRef]Magyari, E., and Keller, B., 1999, “Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface,” J. Phys. D, 32, pp. 577–585.

[CrossRef]Elbashbeshy, E. M. A., 2001, “Heat Transfer Over an Exponentially Stretching Continuous Surface With Suction,” Arc. Mech., 53, pp. 643–651.

Khan, S. K., 2006, “Boundary Layer Viscoelastic Fluid Flow Over an Exponentially Stretching Sheet,” Int. J. Appl. Mech. Eng., 11, pp. 321–335.

Sanjayanand, E., and Khan, S. K., 2006, “On Heat and Mass Transfer in a Visco-Elastic Boundary Layer Flow Over an Exponentially Stretching Sheet,” Int. J. Thermal Sci., 45, pp. 819–828.

[CrossRef]Sajid, M., and Hayat, T., 2008, “Influence of Thermal Radiation on the Boundary Layer Flow Due to an Exponentially Stretching Sheet,” Int. Commun. Heat Mass Transfer, 35, pp. 347–356.

[CrossRef]Bidin, B., and Nazar, R., 2009, “Numerical Solution of the Boundary Layer Flow Over an Exponentially Stretching Sheet With Thermal Radiation,” Euro. J. Sci. Resc., 33(4), pp. 710–717.

El-Aziz, M. A., 2009, “Viscous Dissipation Effect on Mixed Convection Flow of a Micropolar Fluid Over an Exponentially Stretching Sheet,” Can. J. Phys., 87, pp. 359–368.

[CrossRef]Nadeem, S., Zaheer, S., and Fang, T., 2011, “Effects of Thermal Radiation on the Boundary Layer Flow of a Jeffrey Fluid Over an Exponentially Stretching Surface,” Numer. Algor., 57(2), pp. 187–205.

[CrossRef]Ishak, A., 2011, “MHD Boundary Layer Flow Due to an Exponentially Stretching Sheet With Radiation Effect,” Sains Malaysiana, 40, pp. 391–395.

Andersson, H. I., and Dandapat, B. S., 1992, “Flow of a Power Law Fluid Over a Stretching Sheet,” Appl. Anal. Continuous Media, 1, pp. 339–347.

Hassanien, I. A., 1996, “Flow and Heat Transfer on a Continuous Flat Surface Moving in a Parallel Free Stream of Power-Law Fluid,” Appl. Model., 20, pp. 779–784.

[CrossRef]Sadeghy, K., and Sharifi, M., 2004, “Local Similarity Solution for the Flow of a ‘Second-Grade’ Viscoelastic Fluid Above a Moving Plate,” Int. J. Non-Linear Mech., 39, pp. 1265–1273.

[CrossRef]Serdar, B., and Salih Dokuz, M., 2006, “Three-Dimensional Stagnation Point Flow of a Second Grade Fluid Towards a Moving Plate,” Int. J. Eng. Sci., 44, pp. 49–58.

[CrossRef]Haroun, M. H., 2007, “Effect of Deborah Number and Phase Difference on Peristaltic Transport of a Third-Order Fluid in an Asymmetric Channel,” Commun. Nonlinear Sci. Numer. Simul., 12, pp. 1464–1480.

[CrossRef]Siddiqui, A. M., Zeb, A., Ghori, Q. K., and Benharbit, A. M., 2008, “Homotopy Perturbation Method for Heat Transfer Flow of a Third Grade Fluid Between Parallel Plates,” Chaos Solitons Fractals, 36, pp. 182–192.

[CrossRef]Sajid, M., Ahmad, I., Hayat, T., and Ayub, M., 2009, “Unsteady Flow and Heat Transfer of a Second Grade Fluid Over a Stretching Sheet,” Commun. Nonlinear Sci. Numer. Simul., 14, pp. 96–108.

[CrossRef]Heyhat, M. M., and Khabazi, N., 2011, “Non-Isothermal Flow of Maxwell Fluids Above Fixed Flat Plates Under the Influence of a Transverse Magnetic Field,” Proc. IMechE, 225, pp. 909–916.

Hayat, T., Awais, M., and Sajid, M., 2011, “Mass Transfer Effects on the Unsteady Flow of UCM Fluid Over a Stretching Sheet,” Int. J. Mod. Phys. B, 25, pp. 2863–2878.

[CrossRef]Fung, Y. C., 1984, *Biodynamics Circulation*, Springer, New York.

Dash, R. K., Mehta, K. N., and Jayaraman, G., 1996, “Casson Fluid Flow in a Pipe Filled With a Homogeneous Porous Medium,” Int. J. Eng. Sci., 34(10), pp. 1145–1156.

[CrossRef]Eldabe, N. T. M., and Salwa, M. G. E., 1995, “Heat Transfer of MHD Non-Newtonian Casson Fluid Flow Between Two Rotating Cylinders,” J. Phys. Soc. Jpn., 64, pp. 41–64.

[CrossRef]Boyd, J., Buick, J. M., and Green, S., 2007, “Analysis of the Casson and Carreau-Yasuda Non-Newtonian Blood Models in Steady and Oscillatory Flow Using the Lattice Boltzmann Method,” Phys. Fluids, 19, pp. 93–103.

[CrossRef]Mustafa, M., Hayat, T., Pop, I., and Aziz, A., 2011, “Unsteady Boundary Layer Flow of a Casson Fluid Due to an Impulsively Started Moving Flat Plate,” Heat Transfer-Asian Res.

*,*40(6), pp. 563–576.

[CrossRef]Bhattacharyya, K., 2011, “Boundary Layer Flow and Heat Transfer Over an Exponentially Shrinking Sheet,” Chin. Phys. Lett., 28(7), p. 074701.

[CrossRef]Liao, S. J., 2003, *Beyond Perturbation: Introduction to the Homotopy Analysis Method*, Chapman and Hall/CRC, Boca Raton, FL.

Liao, S. J., 1999, “An Explicit, Totally Analytic Approximation of Blasius' Viscous Flow Problems,” Int. J. Non-Linear Mech., 34, pp. 759–778.

[CrossRef]Liao, S. J., 2004, “On the Homotopy Analysis Method for Nonlinear Problems,” Appl. Math. Comput., 147, pp. 499–513.

[CrossRef]Liao, S. J., and Tan, Y., 2007, “A General Approach to Obtain Series Solutions of Nonlinear Differential Equations,” Studies Appl. Math., 119, pp. 297–354.

[CrossRef]Liao, S. J., 2009, “Notes on the Homotopy Analysis Method: Some Definitions and Theorems,” Commun. Nonlinear Sci. Numerical Simulat., 14, pp. 983–997.

[CrossRef]Van Gorder, R. A., and Vajravelu, K., 2009, “On the Selection of Auxiliary Functions, Operators, and Convergence Control Parameters in the Application of the Homotopy Analysis Method to Nonlinear Differential Equations: A General Approach,” Commun. Nonlinear Sci. Numer. Simulat., 14, pp. 4078–4089.

[CrossRef]Van Gorder, R. A., and Vajravelu, K., 2011, “Multiple Solutions for Hydromagnetic Flow of a Second Grade Fluid Over a Stretching or Shrinking Sheet,” Q. Appl. Math., 69, pp. 405–424.

Crane, L. J., 1970, “Flow Past a Stretching Plate,” ZAMP, 21, pp. 645–647.

[CrossRef]Van Gorder, R. A., and Vajravelu, K., 2011, “Convective Heat Transfer in a Conducting Fluid Over a Permeable Stretching Surface With Suction and Internal Heat Generation/Absorption,” Appl. Math. Comput., 217, pp. 5810–5821.

[CrossRef]Troy, W. C., Overman, E. A., Ermentrout, G. B., and Keener, J. P., 1987, “Uniqueness of Flow of a Second Order Fluid Past a Stretching Sheet,” Q. Appl. Math., 44, pp. 753–755.

Vajravelu, K., and Rollins, D., 2004, “Hydromagnetic Flow of a Second Grade Fluid Over a Stretching Sheet,” Appl. Math. Comput., 148, pp. 783–791.

[CrossRef]Fang, T., and Zhang, J., 2009, “Closed-Form Exact Solutions of MHD Viscous Flow Over a Shrinking Sheet,” Commun. Nonlinear Sci. Numer. Simulat., 14, pp. 2853–2857.

[CrossRef]Abel, M. S., and Nandeppanavar, M. M., 2009, “Heat Transfer in MHD Viscoelastic Boundary Layer Flow Over a Stretching Sheet With Non-Uniform Heat Source/Sink,” Commun. Nonlinear Sci. Numer. Simulat., 14, pp. 2120–2131.

[CrossRef]Chakrabarti, A., and Gupta, A. S., 1979, “Hydromagnetic Flow and Heat Transfer Over a Stretching Sheet,” Q. Appl. Math., 37, pp. 73–78.

Vajravelu, K., and Rollins, D., 1992, “Heat Transfer in an Electrically Conducting Fluid Over a Stretching Sheet,” Int. J. Non-Linear Mech., 27, pp. 265–277.

[CrossRef]Andersson, H. I., 1995, “An Exact Solution of the Navier–Stokes Equations for Magnetohydro-Dynamic Flow,” Acta Mech., 113, pp. 241–244.

[CrossRef]Pop, I., and Na, T. Y., 1998, “A Note on MHD Flow Over a Stretching Permeable Surface,” Mech. Res. Commun., 25, pp. 263–269.

[CrossRef]Liao, S., 2010, “An Optimal Homotopy-Analysis Approach for Strongly Nonlinear Differential Equations,” Commun. Nonlinear Sci. Numer. Simulat., 15, pp. 2315–2332.

[CrossRef]Van Gorder, R. A., 2012, “Gaussian Waves in the Fitzhugh-Nagumo Equation Demonstrate One Role of the Auxiliary Function

*H*(

*x*) in the Homotopy Analysis Method,” Commun. Nonlinear Sci. Numer. Simulat., 17, pp. 1233–1240.

[CrossRef]Van Gorder, R. A., 2012, “Analytical Method for the Construction of Solutions to the Foppl-Von Karman Equations Governing Deflections of a Thin Flat Plate,” Int. J. Non-Linear Mech., 47, pp. 1–6.

[CrossRef]Van Gorder, R. A., 2013, “Control of Error in the Homotopy Analysis of Semi-Linear Elliptic Boundary Value Problems,” Numer. Algor., 61, pp. 613–629.

[CrossRef]