Research Papers

Mechanics Interpretation on the Bending Stiffness and Wrinkled Pattern of Graphene

[+] Author and Article Information
Ran Xu

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China

Yu Wang

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China;
The key laboratory of Changcheng Institute of Metrology & Measurement (CIMM),
Beijing 100095, China

Bin Liu

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China
e-mail: liubin@tsinghua.edu.cn

Daining Fang

LTCS, College of Engineering,
Peking University,
Beijing 100871, China
e-mail: fangdn@pku.edu.cn

1Corresponding authors.

Manuscript received January 31, 2013; final manuscript received March 5, 2013; accepted manuscript posted April 10, 2013; published online May 31, 2013. Editor: Yonggang Huang.

J. Appl. Mech 80(4), 040910 (May 31, 2013) (5 pages) Paper No: JAM-13-1053; doi: 10.1115/1.4024178 History: Received January 31, 2013; Revised March 05, 2013; Accepted April 10, 2013

In this paper we attempt to answer two questions on graphene from a mechanic's viewpoint: why does this one-atom-thick monolayer have finite bending stiffness to ensure its stability? and what is its wrinkle mechanism? As for the first question, it is found that the repulsive residual internal moment in the bond angle can lead to a nonzero bending stiffness, which makes the graphene flat. Together with long-range attraction among atoms, such as van der Waals forces, a graphene prefers to have a self-buckling wrinkled configuration with many waves.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Mermin, N. D., 1968, “Crystalline Order in Two Dimensions,” Phys. Rev., 176(1), p. 250. [CrossRef]
Landau, L. L. D., Lifshits, E. M., and Pitaevskii, L. L. P., 1980, Statistical Physics: Theory of the Condensed State, Butterworth-Heinemann, London.
Le Doussal, P., and Radzihovsky, L., 1992, “Self-Consistent Theory of Polymerized Membranes,” Phys. Rev. Lett., 69(8), pp. 1209–1212. [CrossRef] [PubMed]
Venables, J. A., Spiller, G. D. T., and Hanbucken, M., 1984, “Nucleation and Growth of Thin-Films,” Rep. Progress Phys., 47(4), pp. 399–459. [CrossRef]
Zinkeallmang, M., Feldman, L. C., and Grabow, M. H., 1992, “Clustering on Surfaces,” Surf. Sci. Rep., 16(8), pp. 377–463. [CrossRef]
Evans, J. W., Thiel, P. A., and Bartelt, M. C., 2006, “Morphological Evolution During Epitaxial Thin Film Growth: Formation of 2D Islands and 3D Mounds,” Surf. Sci. Rep., 61(1–2), pp. 1–128. [CrossRef]
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A., 2005, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, 438(7065), pp. 197–200. [CrossRef] [PubMed]
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., 2004, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306(5696), pp. 666–669. [CrossRef] [PubMed]
Ma, T. H., Li, B., and Chang, T. C., 2011, “Chirality- and Curvature-Dependent Bending Stiffness of Single Layer Graphene,” Appl. Phys. Lett., 99(20), p. 201901. [CrossRef]
Lu, Q., Arroyo, M., and Huang, R., 2009, “Elastic Bending Modulus of Monolayer Graphene,” J. Phys. D, 42(10), p. 102002. [CrossRef]
Guo, X., and Zhang, T., 2010, “A Study on the Bending Stiffness of Single-Walled Carbon Nanotubes and Related Issues,” J. Mech. Phys. Solids, 58(3), pp. 428–443. [CrossRef]
Wang, J. B., Guo, X., and Zhang, H. W., 2009, “A Revisit of the Bending Stiffness of Graphite Sheet and Single-Walled Carbon Nanotubes,” J. Comput. Theor. Nanosci., 6(10), pp. 2242–2246. [CrossRef]
Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., and Roth, S., 2007, “The Structure of Suspended Graphene Sheets,” Nature, 446(7131), pp. 60–63. [CrossRef] [PubMed]
Fasolino, A., Los, J. H., and Katsnelson, M. I., 2007, “Intrinsic Ripples in Graphene,” Nat. Mater., 6(11), pp. 858–861. [CrossRef] [PubMed]
Bao, W. Z., Miao, F., Chen, Z., Zhang, H., Jang, W. Y., Dames, C., and Lau, C. N., 2009, “Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes,” Nat. Nanotechnol., 4(9), pp. 562–566. [CrossRef] [PubMed]
Chang, T. C., and Gao, H. J., 2003, “Size-Dependent Elastic Properties of a Single-Walled Carbon Nanotube Via a Molecular Mechanics Model,” J. Mech. Phys. Solids, 51(6), pp. 1059–1074. [CrossRef]
Li, C. Y., and Chou, T. W., 2003, “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes,” Int. J. Solids Struct., 40(10), pp. 2487–2499. [CrossRef]
Hashemnia, K., Farid, M., and Vatankhah, R., 2009, “Vibrational Analysis of Carbon Nanotubes and Graphene Sheets Using Molecular Structural Mechanics Approach,” Comput. Mater. Sci., 47(1), pp. 79–85. [CrossRef]
Sakhaee-Pour, A., 2009, “Elastic Buckling of Single-Layered Graphene Sheet,” Comput. Mater. Sci., 45(2), pp. 266–270. [CrossRef]
Shi, M. X., Liu, B., Zhang, Z. Q., Zhang, Y. W., and Gao, H. J., 2012, “Direct Influence of Residual Stress on the Bending Stiffness of Cantilever Beams,” Proc. R. Soc. A, 468(2145), pp. 2595–2613. [CrossRef]
Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., and Ordejon, P., 1999, “Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes,” Phys. Rev. B, 59(19), pp. 12678–12688. [CrossRef]
Belytschko, T., Xiao, S. P., Schatz, G. C., and Ruoff, R. S., 2002, “Atomistic Simulations of Nanotube Fracture,” Phys. Rev. B, 65(23), p. 235430. [CrossRef]
Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., 2002, “A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons,” J. Phys. Condens. Matter, 14(4), pp. 783–802. [CrossRef]
Zhang, P., Jiang, H., Huang, Y., Geubelle, P. H., and Hwang, K. C., 2004, “An Atomistic-Based Continuum Theory for Carbon Nanotubes: Analysis of Fracture Nucleation,” J. Mech. Phys. Solids, 52(5), pp. 977–998. [CrossRef]
Wu, J., Hwang, K. C., and Huang, Y., 2008, “An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes,” J. Mech. Phys. Solids, 56(1), pp. 279–292. [CrossRef]
Deng, Z., Klimov, N. N., Solares, S. D., Li, T., Xu, H., and Cannara, R. J., 2013, “Nanoscale Interfacial Friction and Adhesion on Supported Versus Suspended Monolayer and Multilayer Graphene,” Langmuir, 29(1), pp. 235–243. [CrossRef] [PubMed]
Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M., 1992, “UFF, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations,” J. Am. Chem. Soc., 114(25), pp. 10024–10035. [CrossRef]
Liu, B., Huang, Y., Jiang, H., Qu, S., and Hwang, K. C., 2004, “The Atomic-Scale Finite Element Method,” Comput. Methods Appl. Mech. Eng., 193(17–20), pp. 1849–1864. [CrossRef]
Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M. F., and Hwang, K. C., 2005, “Atomic-Scale Finite Element Method in Multiscale Computation With Applications to Carbon Nanotubes,” Phys. Rev. B, 72(3), p. 8. [CrossRef]
Liu, B., and Huang, Y., 2008, “The Stable Finite Element Method for Minimization Problems,” J. Comput. Theor. Nanosci., 5(7), pp. 1251–1254. [CrossRef]
Park, S. I., Ahn, J. H., Feng, X., Wang, S. D., Huang, Y. G., and Rogers, J. A., 2008, “Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates,” Adv. Funct. Mater., 18(18), pp. 2673–2684. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic diagram of graphene with honeycomb lattice

Grahic Jump Location
Fig. 2

(a) A four-carbon-atom system of graphene, which can be treated as a structure with rods and spiral springs. (b) Possible new configuration of three atoms if one atom is removed, and the bond angle is not 120 deg or 2π/3 anymore.

Grahic Jump Location
Fig. 3

The central atom of the four-carbon-atom system is pulled out of the plane with the displacement v

Grahic Jump Location
Fig. 4

Schematic diagram of graphene under a slight pure bending

Grahic Jump Location
Fig. 5

The predicted bending stiffness of graphene monolayer as a function of the bending curvature

Grahic Jump Location
Fig. 6

The stable configurations of free standing graphene monolayer at 0 K with different residual internal moments: (a) M0=0, (b) M0=-kθπ/12, and (c) M0=-kθπ/6

Grahic Jump Location
Fig. 7

(a) The buckling configuration of a double layered plate with different thermal expansion; (b) the buckling pattern of expanding stiff thin film on soft substrate; (c) schematic diagram of the buckling configuration of a graphene; and (d) six possible local buckling patterns for small graphene patches




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In