0
Research Papers

A Finite-Deformation Mechanics Theory for Kinetically Controlled Transfer Printing

[+] Author and Article Information
Xue Feng

Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China
AML, Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China
e-mail: fengxue@tsinghua.edu.cn

Huanyu Cheng

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208

Audrey M. Bowen, Ralph G. Nuzzo

Department of Chemistry,
University of Illinois,
Urbana, IL 61801

Andrew W. Carlson

Department of Materials Science
and Engineering,
University of Illinois,
Urbana, IL 61801

John A. Rogers

Department of Chemistry,
University of Illinois,
Urbana, IL 61801
Department of Materials Science
and Engineering,
University of Illinois,
Urbana, IL 61801

1Corresponidng author.

Manuscript received December 21, 2012; final manuscript received December 24, 2012; accepted manuscript posted Marach 6, 2013; published online August 21, 2013. Editor: Yonggang Huang.

J. Appl. Mech 80(6), 061023 (Aug 21, 2013) (5 pages) Paper No: JAM-12-1567; doi: 10.1115/1.4023963 History: Received December 21, 2012; Revised December 24, 2012; Accepted March 06, 2013

Abstract

The widely used steady-state energy release rate G = F/w is extended to account for the elastic energy of deformed compliant stamps, e.g., low-modulus poly(dimethyl siloxane) (PDMS). An analytical expression for the energy release rate is obtained to quantify interfacial adhesion strength in tape peeling tests, and to analyze the dynamics of kinetically controlled transfer printing. The critical delamination velocity to separate retrieval and printing is related to the critical energy release rate and the tensile stiffness of the stamp. Experimental results validate the analytical expression established by the mechanics model.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ahn, J.-H., Kim, H.-S., Lee, K. J., Jeon, S., Kang, S. J., Sun, Y., Nuzzo, R. G., and Rogers, J. A., 2006, “Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials,” Science, 314, pp. 1754–1757. [CrossRef] [PubMed]
Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z.-T., and Rogers, J. A., 2006, “Mechanically Flexible Thin-Film Transistors That Use Ultrathin Ribbons of Silicon Derived From Bulk Wafers,” Appl. Phys. Lett., 88, p. 213101. [CrossRef]
Menard, E., Lee, K. J., Khang, D.-Y., Nuzzo, R. G., and Rogers, J. A., 2004, “A Printable Form of Silicon for High Performance Thin Film Transistors on Plastic Substrates,” Appl. Phys. Lett., 84, pp. 5398–5401. [CrossRef]
Menard, E., Nuzzo, R. G., and Rogers, J. A., 2005, “Bendable Single Crystal Silicon Thin Film Transistors Formed by Printing on Plastic Substrates,” Appl. Phys. Lett., 86, p. 093507. [CrossRef]
Stauth, S. A., and Parviz, B. A., 2006, “Self-Assembled Single-Crystal Silicon Circuits on Plastic,” Proc. Natl. Acad. Sci. U.S.A., 103, pp. 13922–13927. [CrossRef] [PubMed]
Sun, Y., Menard, E., Rogers, J. A., Kim, H.-S., Kim, S., Chen, G., Adesida, I., Dettmer, R., Cortez, R., and Tewksbury, A., 2006, “Gigahertz Operation in Flexible Transistors on Plastic Substrates,” Appl. Phys. Lett., 88, p. 183509. [CrossRef]
Sun, Y. G., and Rogers, J. A., 2004, “Fabricating Semiconductor Nano/Microwires and Transfer Printing Ordered Arrays of Them Onto Plastic Substrates,” Nano. Lett., 4, pp. 1953–1959. [CrossRef]
Yuan, H.-C., Ma, Z., Roberts, M. M., Savage, D. E., and Lagally, M. G., 2006, “High-Speed Strained-Single-Crystal-Silicon Thin-Film Transistors on Flexible Polymers,” J. Appl. Phys., 100, p. 013708. [CrossRef]
Zhu, Z.-T., Menard, E., Hurley, K., Nuzzo, R. G., and Rogers, J. A., 2005, “Spin on Dopants for High-Performance Single-Crystal Silicon Transistors on Flexible Plastic Substrates,” Appl. Phys. Lett., 86, p. 133507. [CrossRef]
Meitl, M. A., Zhu, Z.-T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., Adesida, I., Nuzzo, R. G., and Rogers, J. A., 2006, “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nat. Mater., 5, pp. 33–38. [CrossRef]
Park, S. I., Xiong, Y. J., Kim, R. H., Elvikis, P., Meitl, M., Kim, D. H., Wu, J., Yoon, J., Yu, C. J., Liu, Z. J., Huang, Y. G., Hwang, K., Ferreira, P., Li, X. L., Choquette, K., and Rogers, J. A., 2009, “Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays,” Science, 325(5943), pp. 977–981. [CrossRef] [PubMed]
Hsia, K. J., Huang, Y., Menard, E., Park, J.-U., Zhou, W., Rogers, J., and Fulton, J. M., 2005, “Collapse of Stamps for Soft Lithography Due to Interfacial Adhesion,” Appl. Phys. Lett., 86, p. 154106. [CrossRef]
Huang, Y. Y., Zhou, W., Hsia, K. J., Menard, E., Park, J.-U., Rogers, J. A., and Alleyne, A. G., 2005, “Stamp Collapse in Soft Lithography,” Langmuir, 21, pp. 8058–8068. [CrossRef] [PubMed]
Zhou, W., Huang, Y., Menard, E., Aluru, N. R., Rogers, J. A., and Alleyne, A. G., 2005, “Mechanism for Stamp Collapse in Soft Lithography,” Appl. Phys. Lett., 87, p. 251925. [CrossRef]
Feng, X., Meitl, M. A., Bowen, A. M., Huang, Y., Rogers, J. A., and Nuzzo, R. G., 2007, “Competing Fracture in Kinetically Controlled Transfer Printing,” Langmuir, 23, pp. 12555–12560. [CrossRef] [PubMed]
Gent, A. N., 1996, “Adhesion and Strength of Viscoelastic Solids. Is There a Relationship Between Adhesion and Bulk Properties?,” Langmuir, 12, pp. 4492–4496. [CrossRef]
Kim, K.-S., and Aravas, N., 1988, “Elastoplastic Analysis of the Peel Test,” Int. J. Solids Struct., 24, pp. 417–435. [CrossRef]
Kim, K.-S., and Kim, J., 1988, “Elasto-Plastic Analysis of the Peel Test for Thin Film Adhesion,” J. Eng. Mater. Technol., 110, pp. 266–273. [CrossRef]
Lee, J. N., Park, C., and Whitesides, G. M., 2003, “Solvent Compatibility of Poly(Dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem., 75, pp. 6544–6554. [CrossRef] [PubMed]
Meitl, M. A., Feng, X., Dong, J., Menard, E., Ferreira, P. M., Huang, Y., and Rogers, J. A., 2007, “Stress Focusing for Controlled Fracture in Microelectromechanical Systems,” Appl. Phys. Lett., 90, p. 083110. [CrossRef]
Kim, D.-H., Xiao, J., Song, J., Huang, Y., and Rogers, J. A., 2010, “Stretchable, Curvilinear Electronics Based on Inorganic Materials,” Adv. Mater., 22, pp. 2108–2124. [CrossRef] [PubMed]
Kim, D.-H., Ahn, J.-H., Choi, W.-M., Kim, H.-S., Kim, T.-H., Song, J., Huang, Y. Y., Zhuangjian, L., Chun, L., and Rogers, J. A., 2008, “Stretchable and Foldable Silicon Integrated Circuits,” Science, 320, pp. 507–511. [CrossRef] [PubMed]
Kim, S., Wu, J. A., Carlson, A., Jin, S. H., Kovalsky, A., Glass, P., Liu, Z. J., Ahmed, N., Elgan, S. L., Chen, W. Q., Ferreira, P. M., Sitti, M., Huang, Y. G., and Rogers, J. A., 2010, “Microstructured Elastomeric Surfaces With Reversible Adhesion and Examples of Their Use in Deterministic Assembly by Transfer Printing,” Proc. Natl. Acad. Sci. U.S.A., 107(40), pp. 17095–17100. [CrossRef] [PubMed]
Viventi, J., Kim, D.-H., Moss, J. D., Kim, Y.-S., Blanco, J. A., Annetta, N., Hicks, A., Xiao, J., Huang, Y., Callans, D. J., Rogers, J. A., and Litt, B., 2010, “A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology,” Sci. Transl. Med., 2, p. 24ra22. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic illustrations of (a) retrieval and (b) printing of a thin film. F is the applied peeling force; vp and vd are the peeling and delamination velocities.

Grahic Jump Location
Fig. 2

Deformation of the peeling arm for beam theory, where X–Y is the global coordinate and x–y is the local coordinate

Grahic Jump Location
Fig. 3

Comparison of the energy release rates calculated from Eq. (7) and G = F/w for different delamination velocities vd. The experimental measurements were obtained from PDMS stamps with different Young's modulus of 1.7, 0.3, and 0.03 MPa, respectively (the thicknesses are kept the same).

Grahic Jump Location
Fig. 4

The critical retrieval/printing peeling forces (per unit width) F/w as a function of the delamination velocity vd for E = 1.7 MPa, hstamp = 1 mm, Efilm = 150 GPa, and hfilm = 100 nm. The intercept of the two curves gives the critical delamination velocity.

Grahic Jump Location
Fig. 5

The critical peeling force (per unit width) F/w and the critical delamination velocity vcrit as functions of the tensile stiffness of the stamp per unit width EA¯/w, for the Young's modulus of stamps of 1.7, 0.3, and 0.03 MPa and the thickness of gold films of 100 nm and 10 μm, respectively

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In