Lemaitre, J., and Chaboche, J. L., 1994, *Mechanics of Solid Materials*, Cambridge University Press, Cambridge, UK.

Chaboche, J. L., 2008, “A Review of Some Plasticity and Viscoplasticity Constitutive Theories,” Int. J. Plast., 24, pp. 1642–1693.

[CrossRef]Hill, R., 1950, *The Mathematical Theory of Plasticity*, Clarendon Press, Oxford, UK.

Hill, R., 1970, “Constitutive Inequalities for Isotropic Elastic Solids Under Finite Strain,” Proc. R. Soc. London, Ser. A, 314, pp. 457–472.

[CrossRef]Simo, J. C., and Hughes, T. J. R., 1998, *Computational Inelasticity*, Springer, Berlin.

Bruhns, O. T., Xiao, H., and Meyers, A., 1999, “Self-Consistent Eulerian Rate Type Elasto-Plasticity Models Based Upon the Logarithmic Stress Rate,” Int. J. Plast., 15, pp. 479–520.

[CrossRef]Xiao, H., Bruhns, O. T., and Meyers, A., 2006, “Elastoplasticity Beyond Small Deformations,” Acta Mech., 182, pp. 31–111.

[CrossRef]Lee, E. H., 1969, “Elastic-Plastic Deformations at Finite Strains,” ASME J. Appl. Mech., 36, pp. 1–6.

[CrossRef]Lee, E. H., 1981, “Some Comments on Elastic-Plastic Analysis,” Int. J. Solids Struct., 17, pp. 859–872.

[CrossRef]Nemat-Nasser, S., 1979, “Decomposition of Strain Measures and Their Rates in Finite Deformation Elastoplasticity,” Int. J. Solids Struct., 15, pp. 155–166.

[CrossRef]Nemat-Nasser, S., 1982, “On Finite Deformation Elastoplasticity,” Int. J. Solids Struct., 18, pp. 857–72.

[CrossRef]Eterovic, A. L., and Bathe, K. J., 1991, “A Note on the Use of the Additive Decomposition of the Strain Tensor in Finite Deformation Inelasticity,” Comput. Methods Appl. Mech. Eng., 93, pp. 31–38.

[CrossRef]Reinhardt, W. D., and Dubey, R. N., 1998, “An Eulerian-Based Approach to Elastic-Plastic Decomposition,” Acta Mech., 131, pp. 111–119.

[CrossRef]Simo, J. C., 1988, “A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation,” Comput. Methods Appl. Mech. Eng., 66, pp. 199–219.

[CrossRef]Prager, W., 1960, “An Elementary Discussion of Definitions of Stress Rate,” Q. Appl. Math., 18, pp. 403–407.

Metzger, D. R., and Dubey, R. N., 1987, “Corotational Rates in Constitutive Modeling of Elastic–Plastic Deformation,” Int. J. Plast., 4, pp. 341–368.

[CrossRef]Reinhardt, W. D., and Dubey, R. N., 1996, “Application of Objective Rates in Mechanical Modeling of Solids,” ASME J. Appl. Mech., 118, pp. 692–698.

[CrossRef]Reinhardt, W. D., and Dubey, R. N., 1996, “Coordinate-Independent Representation of Spins in Continuum Mechanics,” J. Elast., 42, pp. 133–144.

[CrossRef]
Eshraghi, A., Papoulia, K., and Jahed, H., 2012, “Eulerian Framework for Inelasticity Based on the Jaumann Rate and a Hyperelastic Constitutive Relation—Part I: Rate-Form Hyperelasticity,” ASME J. Appl. Mech., 80(2), pp. 021027.

[CrossRef]Green, A. E., and Naghdi, P. M., 1965, “A General Theory of an Elastic-Plastic Continuum,” Arch. Ration. Mech. Anal., 18, pp. 251–281.

[CrossRef]Green, A. E., and Naghdi, P. M., 1966, “A Thermodynamic Development of Elastic-Plastic Continua,” Proceedings of the IUTAM Symposium on Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, Vienna, June 22–28, H.Parkus and L. I.Sedov, eds., Springer, New York, pp. 117–131.

Naghdi, P. M., 1990, “A Critical Review of the State of Finite Plasticity,” ZAMP, 41, pp. 315–394.

[CrossRef]Sidoroff, F., 1973, “The Geometrical Concept of Intermediate Configuration and Elastic-Plastic Finite Strain,”
Arch. Mech., 25, pp. 299–308.

Simo, J. C., and Ortiz, M., 1985, “A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations,” Comput. Methods Appl. Mech. Eng., 49, pp. 221–245.

[CrossRef]Lubarda, V. A., 1999, “Duality in Constitutive Formulation of Finite-Strain Elastoplasticity Based on F=F

_{e}F

_{p} and F=F

^{p}F

^{e} Decompositions,” Int. J. Plast., 15, pp. 1277–1290.

[CrossRef]Lubarda, V. A., 2004, “Constitutive Theories Based on the Multiplicative Decomposition of Deformation Gradient: Thermoelasticity, Elastoplasticity, and Biomechanics,” ASME Appl. Mech. Rev., 57, pp. 95–108.

[CrossRef]Montans, F. J., and Bathe, K. J., 2005, “Computational Issues in Large Strain Elastoplasticity: An Algorithm for Mixed Hardening and Plastic Spin,” Int. J. Numer. Methods Eng., 63, pp. 159–196.

[CrossRef]Simo, J. C., 1988, “A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part II. Computational Aspects,” Comput. Methods Appl. Mech. Eng., 68, pp. 1–31.

[CrossRef]Nemat-Nasser, S., 1990, “Certain Basic Issues in Finite-Deformation Continuum Plasticity,” Meccanica, 25, pp. 223–229.

[CrossRef]Kratochvil, J., 1973, “On a Finite Strain Theory of Elastic-Plastic Materials,” Acta Mech., 16, pp. 127–142.

[CrossRef]Dafalias, Y. F., 1983, “Corotational Rates for Kinematic Hardening at Large Plastic Deformations,” ASME J. Appl. Mech., 50, pp. 561–565.

[CrossRef]Dafalias, Y. F., 1984, “A Missing Link in the Formulation and Numerical Implementation of Finite Transformation Elastoplasticity,” *Constitutive Equations: Macro and Computational Aspects*, K. J.Williams, ed., ASME, New York.

Cho, H. W., and Dafalias, Y. F., 1996, “Distortional and Orientational Hardening at Large Viscoplastic Deformations,” Int. J. Plast., 12, pp. 903–925.

[CrossRef]Dafalias, Y. F., 1998, “Plastic Spin: Necessary or Redundancy?,” Int. J. Plast., 14, pp. 909–931.

[CrossRef]Argyris, J. H., and Doltsinis, J.St., 1979, “On the Large Strain Inelastic Analysis in Natural Formulation. Part I. Quasi-Static Problems,” Comput. Methods Appl. Mech. Eng., 20, pp. 213–251.

[CrossRef]Argyris, J. H., and Doltsinis, J.St., 1980, “On the Large Strain Inelastic Analysis in Natural Formulation. Part II. Dynamic Problems,” Comput. Methods Appl. Mech. Eng., 21, pp. 91–126.

[CrossRef]Weber, G., and Anand, L., 1990, “Finite Deformation Constitutive Equations and a Time Integration Procedure for Isotropic Hyperelastic-Viscoplastic Solids,” Comput. Method Appl. Mech. Eng., 79, pp. 173–202.

[CrossRef]Gabriel, G., and Bathe, K. J., 1995, “Some Computational Issues in Large Strain Elastoplastic Analysis,” Comput. Struct., 56, pp. 249–267.

[CrossRef]Eshraghi, A., Jahed, H., and Lambert, S., 2010, “A Lagrangian Model for Hardening Behaviour of Materials at Finite Deformation Based on the Right Plastic Stretch Tensor,” Mater. Des., 31, pp. 2342–2354.

[CrossRef]
Panoskaltsis, V. P., Polymenakos, L. C., and Soldatos, D., 2008, “On Large Deformation Generalized Plasticity,” J. Mech. Mater. Struct., 3(3), pp. 441–457.

[CrossRef]Mandel, J., 1974, “Thermodynamics and Plasticity,” Proceedings of the International Symposium on Foundations of Continuum Thermodynamics, J. J.Delgado, M. N. R.Nina, and J. H.Whitelaw, eds., Macmillan, New York, pp. 283–304.

Panoskaltsis, V. P., Polymenakos, L. C., and Soldatos, D., 2008, “Eulerian Structure of Generalized Plasticity: Theoretical and Computational Aspects,” J. Eng. Mech., 134(5), 354–361.

[CrossRef]Marsden, J. E., and Hughes, T. J. R., 1994, *Mathematical Foundations of Elasticity*, Dover, New York.

Belytschko, T., Liu, W. K., and Moran, B., 2000, *Nonlinear Finite Elements for Continua and Structures*, John Wiley and Sons Ltd., Chichester, UK.

Xiao, H., Bruhns, O. T., and Meyers, A., 1997, “Logarithmic Strain, Logarithmic Spin and Logarithmic Rate,” Acta Mech., 124, pp. 89–105.

[CrossRef]Xiao, H., Bruhns, O. T., and Meyers, A., 1997, “Hypoelasticity Model Based Upon the Logarithmic Stress Rate,” J. Elast., 47, pp. 51–68.

[CrossRef]
Xiao, H., Bruhns, O. T., and Meyers, A., 1998, “On Objective Corotational Rates and Their Defining Spin Tensors,” Int. J. Solids Struct., 35, pp. 4001–4014.

[CrossRef]Xiao, H., Bruhns, O. T., and Meyers, A., 1998, “Strain Rates and Material Spins,” J. Elast., 52, pp. 1–41.

[CrossRef]Ogden, R. W., 1997, *Nonlinear Elastic Deformation*, Dover, New York.

Simo, J. C., and Marsden, J. E., 1984, “On the Rotated Stress Tensor and the Material Version of the Doyle-Ericksen Formula,” Arch. Ration. Mech. Anal., 86, pp. 213–231.

[CrossRef]Lubliner, J., 1984, “A Maximum-Dissipation Principle in Generalized Plasticity,” Acta Mech., 52, pp. 225–237.

[CrossRef]Lubliner, J., 1986, “Normality Rules in Large Deformation Plasticity,” Mech. Mater., 5, pp. 29–34.

[CrossRef]Prager, W., 1956, “A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids,” ASME J. Appl. Mech., 23, pp. 493–496.

Xiao, H., Bruhns, O. T., and Meyers, A., 2000, “The Choice of Objective Rates in Finite Elastoplasticity: General Results on the Uniqueness of the Logarithmic Rate,” Proc. R. Soc., London, 456, pp. 1865–1882.

[CrossRef]Armstrong, P. J., and Frederick, O. C., 1966, “A Mathematical Representation of the Multiaxial Bauschinger Effect,” CEGB Report No. RD/B/N731.

Voce, E., 1955, “A Practical Strain-Hardening Function,” Metallurgica, 51, pp. 219–226.

Ishikawa, H., 1999, “Constitutive Model of Plasticity in Finite Deformation,” Int. J. Plast., 15, pp. 299–317.

[CrossRef]Swift, W., 1947, “Length Changes in Metals Under Torsional Overstrain,” Engineering, 163, pp. 253–257.