Coulomb, C. A., 1773, “Essai sur une application des règles de Maximis et Minimis à quelques problèmes de statique relatifs à l'architecture,” Mémoire à l'Académie Royale des Sciences, Paris.

Drucker, D. C., and Prager, W., 1952, “Soil Mechanics and Plastic Analysis or Limit Design,” Quarterly Appl. Math., 10, pp. 157–165.

Schofield, A., and Wroth, P., 1968, *Critical State Soil Mechanics*, McGraw-Hill, New York.

Hoek, E., and Brown, E. T., 1997, “Practical Estimates of Rock Mass Strength,” Int. J. Rock Mech. Min. Sci., 34(8), pp. 1165–1186.

[CrossRef]SuquetP., 1982, Plasticité et Homogénéisation, Thèse de Doctorat d'Etat dissertation, Université Pierre et Marie Curie, Paris, France.

de BuhanP., 1986, Approche Fondamentale du Calcul à la Rupture des Ouvrages en Sols Renforcés, Thèse de Doctorat d'Etat dissertation, Université de Paris VI, Paris, France.

de Buhan, P., and Taliercio, A., 1991, “A Homogenization Approach to the Yield Strength of Composite Materials,” Eur. J. Mech. A/Solids, 10(2), pp. 129–54.

Lee, B. J., and Mear, M. E., 1992, “Effective Properties of Power-Law Solids Containing Elliptical Inhomogeneities: I. Rigid Inclusions II. Voids,” Mech. Mat., 14(4), pp 313–335, 337–356.

[CrossRef]Suquet, P., 1997, “Effective Behavior of Nonlinear Composites,” *Continuum Micromechanics*, P.Suquet, ed., Springer-Verlag, Berlin, pp. 197–264.

Barthélémy, J.-F., and Dormieux, L., 2003, “Determination of the Macroscopic Strength Criterion of a Porous Medium by Nonlinear Homogenization,” Comptes Rendus Mécanique, 331(4), pp. 271–276.

[CrossRef]Dormieux, L., Kondo, D., and Ulm, F.-J., 2006, *Microporomechanics*, Wiley, Chichester, UK.

Cariou, S., Ulm, F.-J., and Dormieux, L., 2008, “Hardness-Packing Density Scaling Relations for Cohesive-Frictional Porous Materials,” J. Mech. Phys. Sol., 56(3), pp. 924–952.

[CrossRef]Lemarchand, E., Ulm, F.-J., and Dormieux, L., 2002, “Effect of Inclusions on Friction Coefficient of Highly Filled Composite Materials,” J. Eng. Mech., 128(8), pp. 876–884.

[CrossRef]Barthélémy, J.-F., and Dormieux, L., 2004, “A Micromechanical Approach to the Strength Criterion of Drucker–Prager Materials Reinforced by Rigid Inclusions,” Int. J. Num. Anal. Meth. Geomech., 28(7–8), pp. 565–582.

[CrossRef]Ponte Castañeda, P., 1991, “The Effective Mechanical Properties of Nonlinear Isotropic Composites,” J. Mech. Phys. Sol., 39(1), pp. 45–71.

[CrossRef]Ponte Castañeda, P., 1992, “New Variational Principles in Plasticity and Their Application to Composite Materials,” J. Mech. Phys. Sol., 40(8), pp. 1757–1788.

[CrossRef]Ponte Castañeda, P., 1996, “Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials,” J. Mech. Phys. Sol., 44(6), pp. 827–862.

[CrossRef]Ponte Castañeda, P., 2002, “Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: I. Theory,” J. Mech. Phys. Sol., 50(4), pp. 737–757.

[CrossRef]Bilger, N., Auslender, F., Bornert, M., and Masson, R., 2002, “New Bounds and Estimates for Porous Media With Rigid Perfectly Plastic Matrix,” Comptes Rendus Mécanique, 330(2), pp. 127–132.

[CrossRef]Vincent, P.-G., Monerie, Y., and Suquet, P., 2009, “Porous Materials With Two Populations of Voids Under Internal Pressure: I. Instantaneous Constitutive Relations,” Int. J. Sol. Struct., 46(3–4), pp. 480–506.

[CrossRef]
Danas, K., and Ponte Castañeda, P., 2009, “A Finite-Strain Model for Anisotropic Viscoplastic Porous Media: I. Theory,” Eur. J. Mech. A/Solids, 28(3), pp. 387–401.

[CrossRef]Gathier, B., and Ulm, F. J., 2008, “Multiscale Strength Homogenization—Application to Shale Nanoindentation,” CEE Research Report R08-01, Massachusetts Institute of Technology, Cambridge, MA.

Ortega, J. A., Gathier, B., and Ulm, F.-J., 2010, “Homogenization of Cohesive-Frictional Strength Properties of Porous Composites: Linear Comparison Composite Approach,” J. Nanomech. Micromech., 1(1), pp. 11–23.

[CrossRef]Gurson, A. L., 1977, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: I. Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mat. Tech., 99, pp. 2–15.

[CrossRef]Leblond, J.-B., 2003, Mécanique de la Rupture Fragile et Ductile. Etudes en Mécanique des Matériaux et des Structures, Hermes Science, Paris.

Gologanu, M., Leblond, J.-B., Perrin, G., and Devaux, J., 1997, “Recent Extensions of Gurson's Model for Porous Ductile Metals,” *Continuum Micromechanics*, P.Suquet, ed., Springer-Verlag, Berlin, pp. 61–130.

Trillat, M., and Pastor, J., 2005, “Limit Analysis and Gurson's Model,” Eur. J. Mech. A/Solids, 24(5), pp. 800–819.

[CrossRef]Jeong, H. Y., 2002, “A New Yield Function and a Hydrostatic Stress-Controlled Void Nucleation Model for Porous Solids With Pressure-Sensitive Matrices,” Int. J. Sol. Struct., 39(5), pp. 1385–1403.

[CrossRef]Guo, T. F., Faleskog, J., and Shih, C. F., 2008, “Continuum Modeling of a Porous Solid With Pressure-Sensitive Dilatant Matrix,” J. Mech. Phys. Sol., 56(6), pp. 2188–2212.

[CrossRef]Suquet, P., 1995, “Overall Properties of Nonlinear Composites: A Modified Secant Modulus Theory and Its Link With Ponte Castañeda's Nonlinear Variational Procedure,” C. R. Acad. Sci. Paris, 320(Série IIb), pp. 563–571.

Desrues, J., 2002, “Limitations du Choix de l'Angle de Frottement pour le Critère de Plasticité de Drucker–Prager,” Revue Française de Génie Civil, 6, pp. 853–862.

Salençon, J., 1990, “An Introduction to the Yield Design Theory and Its Application to Soil Mechanics,” Eur. J. Mech. A/Solids, 9(5), pp. 477–500.

Ulm, F. J., and Coussy, O., 2003, *Mechanics and Durability of Solids, Vol. 1: Solid Mechanics*, Prentice Hall, Upper Saddle River, NJ.

Levin, V. M., 1967, “Thermal Expansion Coefficients of Heterogeneous Materials,” Mekhanika Tverdogo Tela, 2, pp. 83–94.

Laws, N., 1973, “On the Thermostatics of Composite Materials,” J. Mech. Phys. Sol., 21(1), pp. 9–17.

[CrossRef]Perrin, G., and Leblond, J. B., 1990, “Analytical Study of a Hollow Sphere Made of Plastic Porous Material and Subjected to Hydrostatic Tension—Application to Some Problems in Ductile Fracture of Metals,” Int. J. Plast., 6(6), pp. 677–699.

[CrossRef]de Buhan, P., and Dormieux, L., 1996, “On the Validity of the Effective Stress Concept for Assessing the Strength of Saturated Porous Materials: A Homogenization Approach,” J. Mech. Phys. Sol., 44(10), pp. 1649–1667.

[CrossRef]Fabrègue, D., and Pardoen, T., 2008, “A Constitutive Model for Elastoplastic Solids Containing Primary and Secondary Voids,” J. Mech. Phys. Sol., 56(3), pp. 719–741.

[CrossRef]Mori, T., and Tanaka, K., 1973, “Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions,” Acta Metallurgica, 21(5), pp. 571–574.

[CrossRef]Hershey, A. V., 1954, “The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals,” J. Appl. Mech., 21, pp. 226–240.

Kröner, E., 1958, “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls,” Zeitschrift für Physik A Hadrons and Nuclei, 151(4), pp. 504–518.

[CrossRef]Hashin, Z., 1962, “The Elastic Moduli of Heterogeneous Materials,” ASME J. Appl. Mech., 29(1), pp. 143–150.

[CrossRef]Hashin, Z., and Shtrikman, S., 1963, “A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. Phys. Sol., 11(2), pp. 127–140.

[CrossRef]
Thoré, P., Pastor, F., Pastor, J., and Kondo, D., 2009, “Closed-Form Solutions for the Hollow Sphere Model With Coulomb and Drucker–Prager Materials Under Isotropic Loadings,” Comptes Rendus Mécanique, 337(5), pp. 260–267.

[CrossRef]Trillat, M., Pastor, J., and Thoré, P., 2006, “Limit Analysis and Conic Programming: Porous Drucker–Prager Material and Gurson's Model,” Comptes Rendus Mécanique, 334(10), pp. 599–604.

[CrossRef]Pastor, F., Thoré, P., Loute, E., Pastor, J., and Trillat, M., 2008, “Convex Optimization and Limit Analysis: Application to Gurson and Porous Drucker–Prager Materials,” Eng. Fract. Mech., 75(6), pp. 1367–1383.

[CrossRef]Pastor, J., Thoré, P., and Pastor, F., 2010, “Limit Analysis and Numerical Modeling of Spherically Porous Solids With Coulomb and Drucker–Prager Matrices,” J. Comp. Appl. Math., 234(7), pp. 2162–2174.

[CrossRef]Schweiger, H. F., 1994. “On the Use of Drucker–Prager Failure Criteria for Earth Pressure Problems,” Computers Geotech., 16(3), pp. 223–246.

[CrossRef]Danas, K., and Ponte Castañeda, P., 2009, “A Finite-Strain Model for Anisotropic Viscoplastic Porous Media: II. Applications,” Eur. J. Mech. A/Solids, 28(3), pp. 402–416.

[CrossRef]