Ament, W. S., 1953, “Sound Propagation in Gross Mixtures,” J. Acoust. Soc. Am., 25 , pp. 638–641.

[CrossRef]Postma, G. W., 1955, “Wave Propagation in a Stratified Medium,” Geophysics, 20 (4), pp. 780–806.

[CrossRef]Nemat-Nasser, A., and Hori, M., 1999, "*Micromechanics: Overall Properties of Heterogeneous Materials*", Elsevier, New York.

Ament, W. S., 1959, “Wave Propagation in Suspensions,” U.S. Naval Research Lab, Report No. 5307.

Mal, A. K., and Knopoff, L., 1967, “Elastic Wave Velocities in Two-Component Systems,” J. Inst. Math. Appl., 3 , pp. 376–387.

[CrossRef]Kuster, G. T., and Toksöz, M. N., 1974, “Velocity and Attenuation of Seismic Waves in Two-Phase Media: Part 1. Theoretical Formulations,” Geophysics, 39 (5), pp. 587–606.

[CrossRef]
Biot, M. A., 1956, “Theory of Propagation of Elastic Waves in Fluid Saturated Porous Solid I: Low Frequency Range,” J. Acoust. Soc. Am., 28 , pp. 168–178.

[CrossRef]
Biot, M. A., 1956, “Theory of Propagation of Elastic Waves in Fluid Saturated Porous Solid II: Higher Frequency Range,” J. Acoust. Soc. Am., 28 , pp 179–191.

[CrossRef]Hill, R., 1952, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc., London, Sect. A, 65 , pp. 349–354.

[CrossRef]Kröner, E., 1953, “Das Fundamentalintegral Der Anisotropen Elastischen Differentialgleic-Hungen,” Z. Phys., 136 , pp. 402–410.

[CrossRef]Hershey, A. V., 1954, “The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals,” J. Appl. Mech., 21 , pp. 236–240.

Hashin, Z., 1964, “Theory of Mechanical Behaviour of Heterogeneous Media,” Appl. Mech. Rev., 17 , pp. 1–9.

Budiansky, B., 1965, “On the Elastic Moduli of Some Heterogeneous Materials,” J. Mech. Phys. Solids, 13 , pp. 223–227.

[CrossRef]Walpole, L. J., 1966, “On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—I,” J. Mech. Phys. Solids, 14 , pp. 151–162.

[CrossRef]Willis, J. R., 1977, “Bounds and Self-Consistent Estimates for the Overall Properties of Anisotropic Composites,” J. Mech. Phys. Solids, 25 , pp. 185–202.

[CrossRef]Christensen, R. M., 1979, "*Mechanics of Composite Materials*", Wiley-Interscience, New York.

Nabarro, F. R. N., 1979, "*Dislocations in Solids, Vol. 1: The Elasticity Theory*", North-Holland, Amsterdam.

Walpole, L. J., 1981, “Elastic Behavior of Composite Materials: Theoretical Foundations,” Adv. Appl. Mech., 21 , pp. 169–242.

[CrossRef]Willis, J. R., 1981, “Variational and Related Methods for the Overall Properties of Composites,” Adv. Appl. Mech., 21 , pp. 1–78.

[CrossRef]Bilby, B. A., Miller, K. J., and Willis, J. R., eds., 1985, "*Fundamentals of Deformation and Fracture—Eshelby Memorial Symposium*", Cambridge University Press, Cambridge.

Mura, T., 1987, "*Micromechanics of Defects in Solids*", 2nd ed., Martinus Nijhoff Publishers, Dordrecht, The Netherlands.

Weng, G. J., Taya, M., and Abé, H., eds., 1990, "*Micromechanics and Inhomogeneity—The T. Mura 65th Anniversary Volume*", Springer-Verlag, New York.

Beran, M. J., 1968, "*Statistical Continuum Theories*", Wiley-Interscience, New York.

Beran, M. J., 1971, “Application of Statistical Theories of Heterogeneous Materials,” Phys. Status Solidi A, 6 , pp. 365–384.

[CrossRef]Kröner, E., 1971, "*Statistical Continuum Mechanics*", Springer–Verlag, Berlin.

Batchelor, G. K., 1974, “Transport Properties of Two-Phase Materials With Random Structure,” Annu. Rev. Fluid Mech., 6 , pp. 227–255.

[CrossRef]McCoy, J. J., 1981, “Macroscopic Response of Continua With Random Microstructure,” "*Mechanics Today*", Vol. 6 , S.Nemat-Nasser, ed., Pergamon, Oxford, pp. 1–40.

Beran, M. J., 1974, “Application of Statistical Theories for the Determination of Thermal, Electrical and Magnetic Properties of Heterogeneous Media,” "*Composite Materials*", Vol. 2 , G.P.Sedneckyj, ed., Academic Press, New York, pp. 209–249.

Beran, M. J., and McCoy, J. J., 1970, “Mean Field Variations in a Statistical Sample of Heterogeneous Linearly Elastic Solids,” Int. J. Solids Struct., 6 , pp 1035–1054.

[CrossRef]Levin, V. M., 1971, “The Relation Between Mathematical Expectations of Stress and Strain Tensors in Elastic Microheterogeneous Media,” Prikladnaya Matematikay Mekanika, 35 , pp. 694–701 (English translation from Russian).

Torquato, S., 1991, “Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties,” Appl. Mech. Rev., 42 , pp. 37–76.

[CrossRef]Coleman, B., and Gurtin, M., 1967, “Thermodynamics With Internal State Variables,” J. Chem. Phys., 47 , pp. 597–613.

[CrossRef]Rice, J. R., 1971, “Inelastic Constitutive Relations for Solids: An Internal–Variable Theory and its Applications to Metal Plasticity,” J. Mech. Phys. Solids, 19 , pp. 433–455.

[CrossRef]Talreja, R., 1985, “A Continuum Mechanics Characterization of Damage in Composite Materials,” Proc. R. Soc. London, Ser. A, 399 , pp. 195–216.

[CrossRef]Ju, J. W., ed., 1992, "*Recent Advances in Damage Mechanics and Plasticity*", Vol. 132 , ASME, New York.

Krajcinovic, D., 1989, “Damage Mechanics,” Mech. Mater., 8 , pp. 117–197.

[CrossRef]Krajcinovic, D., 1996, "*Damage Mechanics*", North-Holland, New York.

Truesdell, C., and Toupin, R. A., 1960, “The Classical Field Theories,” "*Handbuch der Physik*", Springer-Verlag, Berlin.

Bowen, R. W., 1976, “Theory of Mixtures,” "*Continuum Physics*", Vol. 4 , A.C.Eringen, ed., Academic Press, New York.

Bedford, A., and Stern, M., 1972, “Multi-Continuum Theory for Composite Elastic Materials,” Acta Mech., 14 , pp. 85–102.

[CrossRef]Stern, M., and Bedford, A., 1972, “Wave Propagation in Elastic Laminates Using a Multi-Continuum Theory,” Acta Mech., 15 , pp. 22–38.

[CrossRef]Bedford, A., Sutherland, H. J., and Linge, R., 1972, “On Theoretical and Experimental Wave Propagation in a Fiber-Reinforced Elastic Material,” J. Appl. Mech., 39 (2), pp. 597–598.

[CrossRef]Hegemier, G. A., Gurtman, G. A., and Nayfeh, A. H., 1973, “A Continuum Mixture Theory of Wave Propagation in Laminated and Fiber-Reinforced Composites,” Int. J. Solids Struct., 9 , pp. 395–414.

[CrossRef]Nayfeh, A. H., and Gurtman, G. A., 1974, “A Continuum Approach to the Propagation of Shear Waves in Laminated Wave Guides,” J. Appl. Mech., 41 (1), pp. 106–110.

[CrossRef]McNiven, H. D., and Mengi, Y., A., 1979, “Mathematical Model for the Linear Dynamic Behavior of two Phase Periodic Materials,” Int. J. Solids Struct., 15 , pp. 271–280.

[CrossRef]McNiven, H. D., and Mengi, Y., 1979, “A Mixture Theory for Elastic Laminated Composites,” Int. J. Solids Struct., 15 , pp. 281–302.

[CrossRef]McNiven, H. D., and Mengi, Y., 1979, “Propagation of Transient Waves in Elastic Laminated Composites,” Int. J. Solids Struct., 15 , pp. 303–318.

[CrossRef]Altan, B. S., and Subhash, G., 2002, “A Nonlocal Formulation Based on a Novel Averaging Scheme Applicable to Nanostructured Materials,” Mech. Mater., 35 , pp. 281–294.

[CrossRef]Voigt, W., 1894, Theoretische Studien ueber die Elastizitaetverhaeltnisse der Krystalle. Abh. Ges. Wiss. Gottingen, Vol. 34 (1887); pp. 72–79.

Cosserat, E., and Cosserat, F., 1909, "*Theorie de Corps Deformables*", A.Hermann, ed., Scientific Library A. Hermann and Sons, Paris.

Mindlin, R. D., and Eshel, N. N., 1968, “On First Strain-Gradient Theories in Linear Elasticity,” Int. J. Solids Struct., 1 , pp. 109–124.

[CrossRef]Ru, C. Q., and Aifantis, E. C., 1993, “A Simple Approach to Solve Boundary-Value Problems in Gradient Elasticity,” Acta Mech., 10 , pp. 59–68.

[CrossRef]Ting, T. C. T., 2005, “The Polarization Vectors at the Interface and the Secular Equation for Stoneley Waves in Monoclinic Biomaterials,” Proc. R. Soc., London, Ser. A, 461 , pp. 711–731.

[CrossRef]Jerzak, W., Siegmann, W. L., and Collins, M. D., 2005, “Modeling Rayleigh and Stoneley Waves and Other Interface and Boundary Effects With the Parabolic Equation,” J. Acoust. Soc. Am., 117 (6), pp. 3497–3503.

[CrossRef]