Mandelbrot, B. B., 1975, *Les Objets Fractals: Forme, Hasard et Dimension*, Flammarion, Paris.

Mandelbrot, B. B., 1983, *Fractal Geometry of Nature*, W. H. Freeman and Company, New York.

Cherepanov,
G. P., Balankin,
A. S., and Ivanova,
V. S., 1995, “Fractal Fracture Mechanics A Review,” Eng. Fract. Mech., 51, No. 6, pp. 997–1033.

Balankin,
A. S., 1997, “Physics of Fracture and Mechanics of Self-Affine Cracks,” Eng. Fract. Mech., 57, No. 2, pp. 135–203.

Mandelbrot,
B. B., Passoja,
D. E., and Paullay,
A. J., 1984, “Fractal Character of Fracture Surfaces in Metals,” Nature (London), 308, pp. 721–722.

Brown,
S. R., and Scholz,
C. H., 1985, “Broad Bandwidth Study of the Topography of Natural Rock Surfaces,” J. Geophys. Res., 90B, pp. 12575–12582.

Power,
W. L., and Tullis,
T. E., 1991, “Euclidean and Fractal Models for the Description of Rock Surface Roughness,” J. Geophys. Res., 96B, pp. 415–424.

Saouma,
V. E., Barton,
C. C., and Gamaledin,
N. A., 1990, “Fractal Characterization of Fracture Surface in Concrete,” Eng. Fract. Mech., 35, pp. 47–53.

Saouma,
V. E., and Barton,
C. C., 1994, “Fractals, Fractures, and Size Effect in Concrete,” J. Eng. Mech., 120, No. 4, pp 835–854.

Wong,
P., Howard,
J., and Lin,
J. S., 1986, “Surface Roughening and The Fractal Nature of Rocks,” Phys. Rev. Lett., 57, pp. 637–640.

Mosolov,
A. B., 1991, “Cracks with Fractal Surfaces,” Dokl. Akad. Nauk SSR, 319, No. 4, pp. 840–844.

Gol’dshteı̌n,
R. V., and Mosolov,
A. B., 1991, “Cracks With a Fractal Surface,” Sov. Phys. Dokl., 36, No. 8, pp. 603–605.

Gol’dshteı̌n,
R. V., and Mosolov,
A. B., 1992, “Fractal Cracks,” J. Appl. Math. Mech., 56, No. 4, pp. 563–571.

Yavari,
A., Hockett,
K. G., and Sarkani,
S., 2000, “The Fourth Mode of Fracture in Fractal Fracture Mechanics,” Int. J. Fract., 101, No. 4, pp. 365–384.

Yavari, A., 2000, “Fracture Mechanics of Fractal Cracks in Classical and Micropolar Solids,” M.S. thesis, The George Washington University, Washington, DC.

Yavari, A., Sarkani, S., and Moyer, E. T., “The Mechanics of Self-Similar and Self-Affine Fractal Cracks,” submitted for publication.

Mosolov,
A. B., 1991, “Fractal J-integral in Fracture,” Sov. Tech. Phys. Lett., 17, pp. 698–700.

Mosolov,
A. B., and Borodich,
F. M., 1992, “Fractal Fracture of Brittle Bodies During Compression,” Sov. Phys. Dokl., 37, No. 5, pp. 263–265.

Mosolov,
A. B., 1993, “Mechanics of Fractal Cracks in Brittle Solids,” Europhys. Lett., 24, No. 8, pp. 673–678.

Xie,
H., 1989, “The Fractal Effect of Irregularity of Crack Branching on the Fracture Toughness of Brittle Materials,” Int. J. Fract., 41, pp. 267–274.

Xie,
H., and Sanderson,
D. J., 1995, “Fractal Effects of Crack Propagation on Dynamic Stress Intensity Factors and Crack Velocities,” Int. J. Fract., 74, pp. 29–42.

Borodich,
F. M., 1992, “Fracture Energy in a Fractal Crack Propagating in Concrete or Rock,” Doklady Rossiyskoy Akademii Nauk, 325, No. 6, pp. 1138–1141.

Borodich,
F. M., 1997, “Some Fractal Models of Fracture,” J. Mech. Phys. Solids, 45, No. 2, pp. 239–259.

Yavari, A., “Generalization of Barenblatt’s Fracture Theory for Fractal Cracks,” Fractals, to appear.

Voigt, W., 1887, “Theoretische Studien über die Elastizitätsverhältnisse der Kristalle,” Abh. Ges. Wiss. Göttingen 34.

Cosserat, E., and Cosserat, F., 1909, *Theorie des Corps Deformables*, Hermann et Fils, Paris.

Truessdel, C., and Toupin, R. A., 1960, *The Classical Field Theories* (Encyclopedia of Physics, Vol. III/1, Secs. 200, 203, 205), Springer, Berlin.

Grioli,
G., 1960, “Elastica Asimmetrica,” Ann. Mat. Pura appl., 50, Ser. IV, p. 389.

Toupin,
R. A., 1962, “Elastic Material With Couple-Stresses,” Arch. Ration. Mech. Anal., 11, pp. 385–414.

Toupin,
R. A., 1964, “Theories of Elasticity With Couple-Stresses,” Arch. Ration. Mech. Anal., 17, pp. 85–112.

Aero,
E. L., and Kuvshinskii,
E. V., 1961, “Fundamental Equations of the Theory of Elastic Media with Rotationally Interacting Particles,” Sov. Phys. Solid State, 2, pp. 1272–1281.

Mindlin,
R. D., and Tiersten,
H. F., 1962, “Effects of Couple-Stresses in Linear Elasticity,” Arch. Ration. Mech. Anal., 11, pp. 415–448.

Koiter,
W. T., 1964, “Couple-Stresses in the Theory of Elasticity,” Proc. K. Ned. Akad. Wet., 67, p. 17.

Eringen,
A. C., and Suhubi,
E. S., 1964, “Nonlinear Theory of Simple Micro-Elastic Solids—I,” Int. J. Eng. Sci., 2, pp. 189–203.

Suhubi,
E. S., and Eringen,
A. C., 1964, “Nonlinear Theory of Simple Micro-Elastic Solids—II,” Int. J. Eng. Sci., 2, pp. 389–404.

Eringen,
A. C., 1966, “Linear Theory of Micropolar Elasticity,” J. Math. Mech., 15, pp. 909–923.

Eringen, A. C., 1968, *Theory of Micropolar Elasticity* (in Fracture), H. Liebowitz, ed., Academic Press, New York.

Cowin,
S. C., 1969, “Singular Stress Concentrations in Plane Cosserat Elasticity,” Z. Angew. Math. Phys., 20, pp. 979–982.

Cowin,
S. C., 1970, “Stress Functions for Cosserat Elasticity,” Int. J. Solids Struct., 6, pp. 389–398.

Cowin,
S. C., 1970, “An Incorrect Inequality in Micropolar Elasticity Theory,” Z. Angew. Math. Phys., 21, pp. 494–497.

Mindlin,
R. D., 1962, “Influence of Couple-Stresses on Stress Concentrations,” Exp. Mech., 3, pp. 1–7.

Neuber,
H., 1966, “Über Probleme der Spannungskonzentration in Cosserat-Körper,” Acta Mech., 2, pp. 48–69.

Ariman,
T., 1967, “On the Stresses Around a Circular Hole in Micropolar Elasticity,” Acta Mech., 3, pp. 216–229.

Kaloni,
P. N., and Ariman,
T., 1967, “Stress Concentration Effects in Micropolar Elasticity,” Z. Angew. Math. Phys., 18, pp. 136–141.

Itou,
S., 1973, “The Effect of Couple-Stresses on The Stress Concentration Around an Elliptical Hole,” Acta Mech., 16, pp. 289–296.

Krishnaswamy,
S., Jin,
Z.-H., and Batra,
R. C., 1998, “Stress Concentration in an Elastic Cosserat Plate Undergoing Extensional Deformations,” ASME J. Appl. Mech., 65, pp. 66–70.

Kishida,
M., Sasaki,
K., and Ishii,
S., 1990, “Torsion of a Circular Bar With Annular Groove in Couple-Stress Theory,” Int. J. Eng. Sci., 28, pp. 773–781.

Hartranft,
R. J., and Sih,
G. C., 1965, “The Effect of Couple-Stresses on Stress Concentration of a Circular Inclusion,” ASME J. Appl. Mech., 32, pp. 429–431.

Weitsman,
Y., 1965, “Couple-Stress Effects on Stress Concentration Around a Cylindrical Inclusion in a Field of Uniaxial Tension,” ASME J. Appl. Mech., 32, pp. 424–428.

Banks,
C. B., and Sokolowski,
M., 1968, “On Certain Two-Dimensional Applications of the Couple Stress Theory,” Int. J. Solids Struct., 3, pp. 757–770.

Itou,
S., 1977, “The Effect of Couple-Stresses on the Stress Concentration Around a Rigid Circular Inclusion in a Strip Under Tension,” Acta Mech., 27, pp. 261–268.

Wang,
T. T., 1970, “The Effect of Couple-Stress on Maximum Stress and Its Location Around Spherical Inclusions,” ASME J. Appl. Mech., 37, pp. 865–868.

Ellis,
R. W., and Smith,
C. W., 1967, “A Thin-Plate Analysis and Experimental Evaluation of Couple-Stress Effects,” Exp. Mech., 7, pp. 372–380.

Perkins,
R. W., and Thompson,
D., 1973, “Experimental Evidence of Couple-Stress Effect,” AIAA J., 11, pp. 1053–1055.

Gauthier,
R. D., and Jahsman,
W. E., 1975, “A Quest for Micropolar Elastic Constants,” ASME J. Appl. Mech., 42, pp. 369–374.

Gauthier,
R. D., and Jahsman,
W. E., 1976, “Bending of a Curved Bar of Micropolar Elastic Material,” ASME J. Appl. Mech., 43, pp. 502–503.

Reddy,
G. V., and Venkatasubramanian,
N. K., 1978, “On the Flexural Rigidity of a Micropolar Elastic Circular Cylinder,” ASME J. Appl. Mech., 45, pp. 429–431.

Park,
H. C., and Lakes,
R. S., 1987, “Torsion of a Micropolar Elastic Prism of Square Cross-Section,” Int. J. Solids Struct., 23, pp. 485–503.

Lakes,
R., 1986, “Experimental Microelasticity of Two Porous Solids,” Int. J. Solids Struct., 22, pp. 55–63.

Lakes,
R., 1991, “Experimental Micro Mechanics Methods for Conventional and Negative Poisson’s Ratio Cellular Solids as Cosserat Continua,” ASME J. Appl. Mech., 113, pp. 148–155.

Lakes, R., 1995, “Experimental Methods for Study of Cosserat Elastic Solids and Other Generalized Elastic Continua,” *Continuum Methods for Materials With Microstructure*, H.-B. Mühlhaus, ed., John Wiley and Sons, New York.

Anthoine,
A., 2000, “Effect of Couple-Stresses on the Elastic Bending of Beams,” Int. J. Solids Struct., 37, pp. 1003–1018.

Hutchinson,
J. W., 2000, “Plasticity in the Micron Scale,” Int. J. Solids Struct., 37, pp. 225–238.

Schijve,
J., 1966, “Note on Couple Stresses,” J. Mech. Phys. Solids, 14, pp. 113–120.

Sternberg,
E., and Muki,
R., 1967, “The Effect of Couple-Stresses on the Stress Concentration Around a Crack,” Int. J. Solids Struct., 3, pp. 69–95.

Sih, G. C., and Liebowitz, H., 1968, *Mathematical Theories of Brittle Fracture* (In Fracture, Vol. II), H. Liebowitz, ed., Academic Press, New York, pp. 67–190.

Ejike,
U. B. C. O., 1969, “The Plane Circular Crack Problem in the Linearized Couple-Stress Theory,” Int. J. Eng. Sci., 7, pp. 947–961.

Kim,
B. S., and Eringen,
A. C., 1973, “Stress Distribution Around an Elliptic Hole in an Infinite Micropolar Elastic Plate,” Lett. Appl. Eng. Sci., 1, pp. 381–390.

Sládek,
J., and Sládek,
V., 1984, “The Effect of Couple Stresses on the Stress Field Around a Penny-Shaped Crack,” Int. J. Fract., 25, pp. 109–119.

Nakamura,
S., and Lakes,
R. S., 1988, “Finite Element Analysis of Stress Concentration Around a Blunt Crack in a Cosserat Elastic Solid,” Comput. Methods Appl. Mech. Eng., 66, pp. 257–266.

Han,
S. Y., Narasimhan,
M. N. L., and Kennedy,
T. C., 1990, “Dynamic Propagation of a Finite Crack in a Micropolar Elastic Solid,” Acta Mech., 85, pp. 179–191.

Kennedy,
T. C., and Kim,
J. B., 1993, “Dynamic Analysis of Cracks in Micropolar Elastic Materials,” Eng. Fract. Mech., 44, pp. 207–216.

Yadava,
R. N., Roy,
A., and Katiyar,
R. K., 1994, “The Effect of Internal Pressure on a Penny-Shaped Crack at the Interface of Two Bonded Dissimilar Micropolar Elastic Half-Spaces,” Int. J. Fract., 65, pp. 19–30.

Atkinson,
C., and Leppington,
F. G., 1977, “The Effect of Couple Stresses on the Tip of a Crack,” Int. J. Solids Struct., 13, pp. 1103–1122.

Lubarda,
V. A., and Markenscoff,
X., 2000, “Conservation Integrals in Couple Stress Elasticity,” J. Mech. Phys. Solids, 48, pp. 553–564.

Griffith,
A. A., 1920, “The Phenomenon of Rupture and Flow in Solids,” Philos. Trans. R. Soc. London, Ser. A, A221, pp. 163–198.

Griffith, A. A., 1924, *Proceedings of the 1st International Congress for Applied Mechanics*, Delft, p. 55.

Buckingham,
E., 1914, “On Physically Similar Systems: Illustrations of the Use of Empirical Equations,” Phys. Rev., IV, No. 4, pp. 345–376.

Buckingham,
E., 1915, “Model Experiments and the Form of Empirical Equations,” Trans. ASME, 37, pp. 263–296.

Barenblatt, G. I., 1996, *Scaling, Self-Similarity, and Intermediate Asymptotics*, Cambridge University Press, New York.

Mandelbrot,
B. B., 1985, “Self-Affine Fractals and Fractal Dimension,” Phys. Scr., 32, pp. 257–260.

Mandelbrot, B. B., 1986, “Self-Affine Fractal Sets, I: The Basic Fractal Dimensions,” *Fractals in Physics*, L. Pietronero and E. Tosatti, eds., Elsevier, New York, pp. 3–16.

Mandelbrot, B. B., 1986, “Self-Affine Fractal Sets, II: Length and Surface Dimensions,” *Fractals in Physics*, L. Pietronero and E. Tosatti, eds., Elsevier, New York, pp. 17–20.

Feder, J., 1988, *Fractals*, Plenum Press, New York.

Vicsek, T., 1989, *Fractal Growth Phenomena*, World Scientific, Singapore.

Falconer, K., 1990, *Fractal Geometry: Mathematical Foundations and Applications*, John Wiley and Sons, Chichester.

Falconer, K., 1997, *Techniques in Fractal Geometry*, John Wiley and Sons, Chichester.