Anderheggen, E., and Knôpfel, H., 1972, “Finite Element Limit Analysis Using Linear Programming,” Int. J. Solids Struct., 8 , pp. 1413–1431.

[CrossRef]Maier, G., Grierson, D. E., and Best, M. J., 1977, “Mathematical Programming Methods for Deformation Analysis at Plastic Collapse,” Comput. Struct., 7 , pp. 599–612.

[CrossRef]Dang Hung, N., 1976, “Direct Limit Analysis via Rigid-Plastic Finite Elements,” Comput. Methods Appl. Mech. Eng., 8 , pp. 81–116.

[CrossRef]Guennouni, A. T., Letallec, P., 1982, “Calcul à la rupture: Régularisation de Norton-Hoff et lagrangien augmenté,” J. Mec. Theor. Appl., 2 (1), pp. 75–99.

Jiang, G. L., 1995, “Non Linear Finite Element Formulation of Kinematic Limit Analysis,” Int. J. Numer. Methods Eng., 38 , pp. 2775–2807.

[CrossRef]Pontes, I. D. S., Borges, L. A., Zouain, N., and Lopes, F. R., 1997, “An Approach to Limit Analysis With Cone-Shaped Yield Surfaces,” Int. J. Numer. Methods Eng., 40 , pp. 4011–4032.

[CrossRef]Christiansen, E., 1980, “Limit Analysis in Plasticity as a Mathematical Programming Problem,” Calcolo, 17 , pp. 41–65.

[CrossRef]Christiansen, E., 1996, “Limit Analysis of Collapse States,” "*Handbook of Numerical Analysis*", P.G.Ciarlet and J.L.Lions, eds., Elsevier, New York, Vol. 4 .

Chaaba, A., Bousshine, L., and De Saxcé, G., 2003, “Kinematic Limit Analysis Modelling by Regularization Approach and Finite Element Method,” Int. J. Numer. Methods Eng., 57 , pp. 1899–1922.

[CrossRef]Huh, H., Lee, C. H., and Yang, W. H., 1999, “A General Algorithm for Plastic Flow Simulation by Finite Element Analysis,” Int. J. Solids Struct., 36 , pp. 1193–1207.

[CrossRef]Hwan, C. L., 1997, “Plane Strain Extrusion by Sequential Limit Analysis,” Int. J. Mech. Sci., 39 (7), pp. 807–817.

[CrossRef]Maier, G., 1969, “Shakedown Theory in Perfect Elastoplasticity With Associated and Non Associated Flow Laws: A Finite Element, Linear Programming Approach,” Meccanica, 4 , pp. 250–260.

[CrossRef]Fenchel, W., 1949, “On Conjugate Convex Functions,” Can. J. Math., 1 , pp. 73–77.

Moreau, J. J., 1968, “La notion de sur-potential et les liaisons unilatérales en élastoplasticité,” C.R. Seances Acad. Sci., Ser. A, 267 , pp. 954–957.

De Saxcé, G., and Feng, Z. Q., 1991, “New Inequation and Functional for Contact With Friction: The Implicit Standard Material Approach,” Mech. Struct. Mach., 19 (3), pp. 301–325.

[CrossRef]De Saxcé, G., and Feng, Z. Q., 1998, “The Bipotential Method: A Constructive Approach to Design the Complete Contact Law With Friction and Improved Numerical Algorithms,” Math. Comput. Modell., 28 (4–8), pp. 225–245.

[CrossRef]Fihri, F. H., 2002, “Simulation numérique des procédés de formage à froid des métaux en présence d'une loi non associée du contact avec frottement,” Doctorat thesis., Faculty of Sciences Agdal, Rabat, Morroco.

De Saxcé, G., Berga, A., and Bousshine, L., 1992, “The Implicit Standards Materials for Non Associated Plasticity in Soil Mechanics,” "*Proceedings of the International Congress on Numerical Methods in Engineering and Applied Sciences*", Concepcion, Chile, Vo1. 1 , pp. 585–594.

Bousshine, L., 1994, “Processus de mise en forme des métaux et des matériaux granulaires,” Ph.D. thesis, Polytechnic Faculty of Mons, Mons, Belgium.

Chaaba, A., Bousshine, L., De Saxcé, G., and Guerlement, G., 2000, “Granular Material Limit Analysis and Application for Slope Stability, Fourth EUROMECH Conference , Metz, France, Jun. 26–30.

De Saxcé, G., and Bousshine, L., 1998, “Limit Analysis Theorems for Implicit Standard Materials: Application to the Unilateral Contact With Dry Friction and Non-Associated Flow Rules in Soils and Rocks,” Int. J. Mech. Sci., 40 (4), pp. 387–398.

[CrossRef]Bousshine, L, Chaaba, A., and De Saxcé, G., 2002, “Plastic Limit Load of Frictional Contact Supports Plane Frames,” Int. J. Mech. Sci., 44 (11), pp. 2189–2216.

[CrossRef]Chaaba, A., Bousshine, L., and De Saxcé, G., “Analyse limite des comportements mécaniques non associés,” Plasticité et contact avec frottement, CIMASI ‘2002 . Casablanca, Morroco, Oct. 14–16.

Van Langen, H., and Vermer, P. A., 1990, “Automatic Step Size Correction for Non Associated Plasticity Problems,” Int. J. Numer. Methods Eng., 29 , pp. 579–598.

[CrossRef]Rudnicki, J., and Rice, J. R., 1975, “Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials,” J. Mech. Phys. Solids, 23 , pp. 371–394.

[CrossRef]Bousshine, L., Chaaba, A., and De Saxcé, G., 2001, “Softening in Stress-Strain Curve for Drucker-Prager Non-Associated Plasticity,” Int. J. Plast, 17 (1), pp. 21–46.

[CrossRef]Bousshine, L., Chaaba, A., and De Saxcé, G., 2003, “A New Approach to Shakedown Analysis for Non Standard Elastoplastic Material by the Bipotential,” Jour. Plasticity, 19 (5), pp. 583–598.

[CrossRef]Chaaba, A., Bousshine, L., Elharif, A., and De Saxcé, G., 1997, “Une nouvelle approche des lois non associées et application aux matériaux non standards sous chargement cyclique,” Third Congress of Mechanics , Faculty of Sciences, Tétouan, April, pp. 22–25.

De Saxcé, G., Tritsh, J. B. and Hjiaj, M.1998, “Shakedown of Elastic-Plastic Materials With Non Linear Kinematic Hardening Rule by the Bipotential Approach,” Euromech 385 Colloquium , Aachen, Germany, Sept. 8–11.

Berga, A., and De Saxcé, G., 1994, “Elastoplastic Finite Elements Analysis of Soil Problems With Implicit Standard Materials Constitutive Laws,” Revue européenne des éléments finis (European Journal of Computational Mechanics), 3 , pp. 411–456.

Bouby, C., De Saxcé, G., and Tritsch, J.-B., 2006, “A comparison Between Analytical Calculations of the Shakedown Load by the Bipotential Approach and Step-By-Step Computations for Elastoplastic Materials With Nonlinear Kinematic Hardening,” Int. J. Solids Struct., 43 (9), pp. 2670–2692.

[CrossRef]Murtagh, R. A., and Saunders, M. A., 1987, Minos 5.1 User’s Guide, Stanford University.

Drucker, D. C., 1956, “On Uniqueness in the Theory of Plasticity,” Q. J. Mech. Appl. Math., 14 , pp. 35–42.

BleichH. H., 1972, “On Uniqueness in Ideally Elastoplastic Problems in Case of Nonassociated Flow Rules,” JAM, Trans., ASME, 983–987.

De Saxcé, G., and Bousshine, L., 1993, “On the Extension of Limit Analysis Theorems to the Non Associated Flow Rules in Soils and to the Contact With Coulomb’s Friction,” "*Proceedings of the XI Polish Conference on Computer Methods in Mechanics*", Kielce, Poland, May 11–14, 2 , pp. 815–822.