Volterra, V., 1909, “Sulle Equazioni Integro-Differenziali della Theoria dell’Elasticità,” Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Natur., Rend., 18 , pp. 295–300.

Volterra, V., 1913, "*Lecons sur les Functions de Lignes*", Gauthier-Villard, Paris.

Riesz, F., and Sz.-Nagy, B., 1955, "*Functional Analysis*", Frederick Ungar Publishing, New York.

Gurtin, M. E., and Sternberg, E., 1962, “On the Linear Theory of Viscoelasticity,” Arch. Ration. Mech. Anal., 11 , pp. 291–356.

[CrossRef]Rabotnov, Y. N., 1980, "*Elements of Hereditary Solid Mechanics*", Mir Publishers, Moscow.

Koeller, R. C., 1984, “Application of Fractional Calculus to the Theory of Viscoelasticity,” ASME J. Appl. Mech., 51 , pp. 299–307.

Meshkov, S. I., Pachevskaya, G. N., Postnikov, V. S., and Rossikhin, U. A., 1971, “Integral Representations of εY-Functions and Their Application to Problems in Linear Viscoelasticity,” Int. J. Eng. Sci., 9 , pp. 387–398.

[CrossRef]Rossikhin, Y. A., and Shitikova, M. V., 2007, “Comparative Analysis of Viscoelastic Models Involving Fractional Derivatives of Different Orders,” Fractional Calculus Appl. Anal., 10 , pp. 111–121.

Mainardi, F., and Gorenflo, R., 2007, “Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey,” Fractional Calculus Appl. Anal., 10 , pp. 269–308.

Fraggstedt, M., 2006, “Power Dissipation in Car Tyres,” Thesis, Royal Institute of Technology, Stockholm, Sweden.

Heibig, A., and Palade, L. I., 2008, “On the Rest State Stability of an Objective Fractional Derivative Viscoelastic Fluid Model,” J. Math. Phys., 49 , p. 043101.

[CrossRef]Beris, A. N., and Edwards, B. J., 1993, “On the Admissibility Criteria for Linear Viscoelastic Kernels,” Rheol. Acta, 32 , pp. 505–510.

[CrossRef]Heymans, N., 2003, “Constitutive Equations for Polymer Viscoelasticity Derived From Hierarchical Models in Cases of Failure of Time-Temperature Superposition,” Signal Process., 83 , pp. 2345–2357.

[CrossRef]Read, B. E., 1989, “Mechanical Relaxation in Isotactic Polypropylene,” Polymer, 30 , pp. 1439–1445.

[CrossRef]Sathiyanarayanan, S., Sivakumar, S., and Rao, C. L., 2005, “Experimental and Modeling Study on Form 1 PVDF,” International Conference on Smart Materials Structures and Systems , Bangalore, India, Paper No. ISSS-2005/SA-26, pp. 195–202.

Dîkmen, Ü., 2004, “Modeling of Seismic Wave Attenuation in Soils by using Fractional Derivative Approach,” Ph.D. thesis, Department of Geophysical Engineering, Ankara University, Turkey.

Agrawal, O. P., 1999, “An Analytical Scheme for Stochastic Dynamic Systems Containing Fractional Derivatives,” ASME Paper No. DETC99/VIB-8238.

Rossikhin, Y. A., and Shitikova, M. V., 2008, “Free Damped Vibration of a Oscillator Based on Rabotnov’s Model,” Mech. Time-Depend. Mater., 12 , pp. 129–149.

[CrossRef]Mainardi, F., 1995, “The Time Fractional Diffusion-Wave Equation, ” Radiophys. Quantum Electron., 38 , pp. 20–36.

Mainardi, F., 1996, “The Fundamental Solution for the Fractional Diffusion-Wave Equation,” Appl. Math. Lett., 9 , pp. 23–28.

[CrossRef]Li, C., Liao, X., and Yu, J., 2003, “Synchronization of Fractional Order Chaotic Systems,” Phys. Rev. E, 68 , p. 067203.

[CrossRef]Maione, G., 2006, “A Digital, Noninteger Order, Differentiator Using Laguerre Orthogonal Sequences,” Int. J. Intell. Contr. Syst., 11 , pp. 77–81.

Hara, H., and Ikeda, N., 2005, “Nonlinear Fokker-Planck Equations on a Curved Spacetime Surface and Their Applications,” Journal of the Korean Society, 46 , pp. 651–656.

Metzler, R., and Klafter, J., 2000, “The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Phys. Rep., 339 , pp. 1–77.

[CrossRef]Craiem, D., and Armentano, R., 2007, “A Fractional Derivative Model to Describe Arterial Viscoelasticity,” Biorheology, 44 , pp. 251–263.

Nutting, P. G., 1921, “A New General Law of Deformation,” J. Franklin Inst., 191 , pp. 679–685.

[CrossRef]Catsiff, E., and Tobolsky, A. V., 1955, “Stress-Relaxation of Polyisobutylene in the Transition Region,” J. Colloid Interface Sci., 10 , pp. 375–392.

Rabotnov, Y. N., 1953, “Some Problems of the Theory of Creep,” National Advisory Committee for Aeronautics, Technical Memorandum No. 1353.

Flügge, W., 1975, "*Viscoelasticity*", 2nd ed., Springer-Verlag, Berlin

Zener, C. M., 1948, "*Elasticity and Unelasticity of Metals*", University of Chicago Press, Chicago.

Tobolsky, A. V., and Catsiff, E., 1956, “Elastoviscous Properties of Polyisobutylene (and Other Amorphous Polymers) From Stress-Relaxation Studies. IX. A Summary of Results,” J. Polym. Sci., 19 , pp. 111–121.

[CrossRef]Lee, G., Madigosky, W. M. and Eynck, J. J., 1979, “Dynamic Viscoelastic Properties of Materials,” Naval Surface Weapons Center, Silver Springs, MD, Report No. TR-78-138.

Caputo, M., and Mainardi, F., 1971, “A New Dissipation Model Based on Memory Mechanism,” Pure Appl. Geophys., 91 , pp. 134–147.

[CrossRef]Bagley, R. L., and Torvik, P. J., 1984, “On the Appearance of the Fractional Derivative in the Behavior of Real Materials,” ASME J. Appl. Mech., 51 , pp. 294–298.

Bagley, R. L., and Torvik, P. J., 1983, “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” J. Rheol., 27 , pp. 201–210.

[CrossRef]Rogers, L., 1983, “Operators and Fractional Derivatives for Viscoelastic Constitutive Equations,” J. Rheol., 27 , pp. 351–372.

[CrossRef]Scott Blair, G. W., 1947, “The Role of Psychophysics in Rheology,” J. Colloid Sci., 2 , pp. 21–32.

[CrossRef]Koeller, R. C., 2007, “Toward an Equation of State for Solid Materials With Memory by Use of the Half-Order Derivative,” Acta Mech., 191 , pp. 125–133.

[CrossRef]Heymans, N., and Podlubny, I., 2006, “Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann-Liouville Fractional Derivatives,” Rheol. Acta, 45 , pp. 765–771.

[CrossRef]Podlubny, I., 1999, “Fractional Differential Equations,” "*Mathematics in Science and Engineering*", Vol. 198 , Academic, New York.

Oldham, K. B., and Spanier, J., 1974, "*The Fractional Calculus*", Academic, New York.

Ross, B., 1975, “A Brief History and Exposition of the Fundamental Theory of the Fractional,” Lect. Notes Math., 457 , pp. 1–36.

[CrossRef]Miller, K. S., and Ross, B., 1993, "*An Introduction to the Fractional Calculus and Fractional Differential Equations*", Wiley, New York.

Gel’fand, I. M., and Shilov, G. E., 1964, "*Generalized Functions: Properties and Operations*", Vol. 1 , Academic, New York.

Koeller, R. C., 1986, “Polynomial Operators, Stieltjes Convolution, and Fractional Calculus in Hereditary Mechanics,” Acta Mech., 58 , pp. 251–264.

[CrossRef]Caputo, M., and Mainardi, F., 1971, “Linear Models of Dissipation in Anelastic Solids,” Riv. Nuovo Cimento, 1 pp. 161–198.

[CrossRef]Mittag-Leffler, G. M., 1905, “Sur la représentation analytique d’une branche uniforme d’une function monogène,” Acta Math., 29 , pp. 101–182.

[CrossRef]Truesdell, C., and Noll, W., 1965, "*The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics*", Vol. 3 , Springer-Verlag, Berlin.

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., 1957, "*Higher Transcendental Function*", Vol. 3 , McGraw-Hill, New York.

Welch, S. W. J., Rorrer, R. A. L., and Duren, R. G., 1999, “Application of Time-Based Fractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials,” Mech. Time-Depend. Mater., 3 , pp. 279–303.

[CrossRef]Bagley, R. L., 1991, “The Thermorheologically Complex Material,” Int. J. Eng. Sci., 29 , pp. 797–806.

[CrossRef]Rabotnov, Y. N., 1948, “Some Problems of Creep Theory,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., 10 , pp. 81–91.