Lu, J., and Zhao, X., 2009, “Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes—Part I: Theoretical and Computational Developments,” ASME J. Appl. Mech., 76 , p. 061013.

Rivlin, R. S., and Saunders, D. W., 1951, “Large Elastic Deformations of Isotropic Materials—VII. Experiments on the Deformation of Rubber,” Proc. R. Soc. London, Ser. A, 243 , pp. 251–288.

Govindjee, S., and Mihalic, P. A., 1996, “Computational Methods for Inverse Finite Elastostatics,” Comput. Methods Appl. Mech. Eng., 136 , pp. 47–57.

[CrossRef]Govindjee, S., and Mihalic, P. A., 1998, “Computational Methods for Inverse Deformations in Quasi-Incompressible Finite Elasticity,” Int. J. Numer. Methods Eng., 43 , pp. 821–838.

[CrossRef]Lu, J., Zhou, X., and Raghavan, M. L., 2007, “Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysm,” J. Biomech., 40 , pp. 693–696.

[CrossRef]Lu, J., Zhou, X., and Raghavan, M. L., 2007, “Computational Method of Inverse Elastostatics for Anisotropic Hyperelastic Solids,” Int. J. Numer. Methods Eng., 69 , pp. 1239–1261.

[CrossRef]Lu, J., Zhou, X., and Raghavan, M. L., 2008, “Inverse Method of Stress Analysis for Cerebral Aneurysms,” Biomech. Model. Mechanobiol., 7 , pp. 477–486.

[CrossRef]Zhou, X., and Lu, J., 2008, “Inverse Formulation for Geometrically Exact Stress Resultant Shells,” Int. J. Numer. Methods Eng., 74 , pp. 1278–1302.

[CrossRef]Luhmann, T., Robson, S., Kyle, S., and Harley, I., 2006, "*Close Range Photogrammetry: Principles, Techniques and Applications*", Whittles Publishing, Dunbeath, Caithness, Scotland, UK.

Humphrey, J. D., 2002, "*Cardiovascular Solid Mechanics: Cells, Tissues, and Organs*", Springer, New York.

Rossettos, J. N., 1966, “Nonlinear Membrane Solutions for Symmetrically Loaded Deep Membranes of Revolution,” NASA Technical Report No. NASA TN D-3297.

Wu, C. H., and Peng, D. Y. P., 1972, “On the Asymptotically Spherical Deformation of Arbitrary Membranes of Revolution Fixed Along an Edge and Inflated by Large Pressures—A Nonlinear Boundary Layer Phenomenon,” SIAM J. Appl. Math., 23 , pp. 133–152.

[CrossRef]Hayes, M., and Knops, R. B., 1966, “On Universal Relations in Elasticity Theory,” Z. Angew. Math. Phys., 17 , pp. 636–639.

[CrossRef]Beatty, M. F., 1987, “A Class of Universal Relations in Isotropic Elasticity,” J. Elast., 17 , pp. 113–121.

[CrossRef]Beatty, M. F., 1989, “A Class of Universal Relations for Constrained, Isotropic Elasticity Materials,” Arch. Mech., 80 , pp. 299–312.

Pucci, E., and Saccomandi, G., 1997, “On Universal Relations in Continuum Mechanics,” Continuum Mech. Thermodyn., 9 , pp. 61–72.

[CrossRef]Rivlin, R. S., 2000, “Universal Relations for Elastic Materials,” Rendiconti di Matematica e delle sue Applicazioni, Serie VII, 20 , pp. 35–55.

Rivlin, R. S., 1948, “Large Elastic Deformations of Isotropic Materials, IV. Further Developments of the General Theory,” Proc. R. Soc. London, Ser. A, 241 , pp. 368–397.

Green, A. E., and Adkins, J. E., 1960, "*Large Elastic Deformations and Non-Linear Continuum Mechanics*", Clarendon, Oxford.

Treloar, L. R. G., 1944, “Stress-Strain Data for Vulcanized Rubber Under Various Types of Deformation,” Trans. Faraday Soc., 40 , pp. 59–70.

[CrossRef]Valanis, K. C., and Landel, R. F., 1967, “The Strain-Energy Function of a Hyperelastic Material in Terms of the Extension Ratios,” J. Appl. Phys., 38 , pp. 2997–3002.

[CrossRef]Ogden, R. W., 1972, “Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids,” Proc. R. Soc. London, Ser. A, 326 , pp. 565–584.

[CrossRef]Ogden, R. W., 1982, “Elastic Deformation of Rubberlike Solids,” "*Mechanics of Solids, The Rodney Hill 60th Anniversary Volume*", H.G.Hopkins and M.J.Sewell, eds., Pergamon, Oxford, pp. 499–537.

Treloar, L. R. G., 1976, “The Mechanics of Rubber Elasticity,” Proc. R. Soc. London, Ser. A, 351 , pp. 301–330.

[CrossRef]Gruttmann, F., and Taylor, R. L., 1992, “Theory and Finite Element Formulation of Rubberlike Membrane Shells Using Principal Stretches,” Int. J. Numer. Methods Eng., 35 , pp. 1111–1126.

[CrossRef]Sun, W., and Sacks, M. S., 2005, “Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues,” Biomech. Model. Mechanobiol., 4 , pp. 190–199.

[CrossRef]Gill, P. E., Murray, W., and Saunders, M. A., 2005, “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM Rev., 47 , pp. 99–131.

[CrossRef]Humphrey, J. D., Strumpf, R. K., and Yin, F. C. P., 1990, “Determination of a Constitutive Relation for Passive Myocardium, II. Parameter-Estimation,” ASME J. Biomech. Eng., 112 (3), pp. 340–346.

[CrossRef]Taylor, R. L., 2003, FEAP User Manual, V7.5.

Belytschko, T., Liu, W. K., Organ, D., Fleming, M., and Krysl, P., 1996, “Meshless Methods: An Overview and Recent Developments,” Comput. Methods Appl. Mech. Eng., 139 , pp. 3–47.

[CrossRef]Li, S., and Liu, W. K., 2002, “Meshfree and Particle Methods and Their Application,” Appl. Mech. Rev., 55 , pp. 1–34.

[CrossRef]Hughes, T. J. R., Cottrell, J. A., and Bazilevs, Y., 2005, “Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement,” Comput. Methods Appl. Mech. Eng., 194 , pp. 4135–4195.

[CrossRef]