Melan, E., 1936, “Theorie Statisch Unbestimmter Systeme aus Idealplastischem Baustoff,” Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A, 145 , pp. 195–218.

Koiter, W. T., 1960, “General Theorems for Elastic-Plastic Solids,” "*Progress in Solid Mechanics I*", Vol. 6 , I.N.Sneddon and R.Hill, eds., North-Holland, Amsterdam, pp. 203–313.

Polizzoto, C., 1993a, “On the Condition to Prevent Plastic Shakedown of Structures: Part I Theory, Part II: The Plastic Shakedown Limit Load,” ASME Trans. J. Appl. Mech.

[CrossRef], 60 , pp. 15–25.

Polizzotto, C., 1993b, “A Study on Plastic Shakedown of Structures: Part I: Basic Properties Part II: Theorems,” ASME Trans. J. Appl. Mech.

[CrossRef], 60 , pp. 318–330.

Druyanov, B., and Roman, I., 1997, “Features of the Stress Path at the Post Adaptation Stage and Related Shakedown Conditions,” Int. J. Solids Struct., 34 , pp. 3773–3780.

Druyanov, B., and Roman, I., 1997, “Concept of the Limit Yield Condition in Shakedown Theory,” Int. J. Solids Struct., 34 , pp. 1547–1556.

Ponter, A. R. S., and Engelhardt, M., 2000, “Shakedown Limits for a General Yield Condition: Implementation and Application for a Von Mises Yield Condition,” Eur. J. Mech. A/Solids

[CrossRef], 19 , pp. 423–425.

Tirosh, J., and Peles, S., 2001, “Bounds on the Fatigue Threshold in Metals,” J. Mech. Phys. Solids

[CrossRef], 49 , pp. 1301–1322.

Tirosh, J., and Peles, S., 2003, “Shakedown Bounds for Fatigue Limit in Two Phase Materials,” Int. J. Fract., 119 , pp. 65–81.

Kapoor, A., and Williams, J. A., 1996, “Shakedown Limits in Rolling Sliding Point Contact on an Anisotropic Half Space,” Wear, 191 , pp. 256–260.

Wong, S. K., Kapoor, A., and Williams, J. A., 1997, “Shakedown Limits on Coated and Engineered Surfaces,” Wear

[CrossRef], 203-204 , pp. 162–170.

Dvorack, G. J., and Tarn, J. Q., 1975, “Fatigue and Shakedown in Metal Matrix Composite,” "*Fatigue of Composite Materials*", ASTM STP Vol. 569 , American Society for Testing and Materials, Philadelphia, PA, pp. 145–168.

Jansson, S., and Leckie, F. A., 1992, “Mechanical Behavior of a Continuous Fiber Reinforced Aluminum Matrix Composite Subjected to Transverse and Thermal Loading,” J. Mech. Phys. Solids

[CrossRef], 40 (3), pp. 593–612.

Tirosh, J., 1998, “The Dual Shakedown Conditions for Dilute Fibrous Composites,” J. Mech. Phys. Solids

[CrossRef], 46 , pp. 167–185.

Ponter, A. R. S., and Karadeniz, S., 1985, “An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loading, Part I,” ASME J. Appl. Mech., 52 , pp. 877–882.

Ponter, A. R. S., and Karadeniz, S., 1985, “An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loading, Part II, ASME J. Appl. Mech., 52 , pp. 883–889.

Xue, M. D., Wang, X. F., Williams, F. W., and Xu, B. Y., 1997, “Lower Bound Shakedown Analysis of Axisymmetric Structure Subjected to Variable Mechanical and Thermal Loads,” Int. J. Mech. Sci., 39 , pp. 965–976.

Huang, Y. J., and Stein, E., 1995, “Prediction of the Fatigue Threshold for a Cracked Body Using Shakedown Theory,” Fatigue Fract. Eng. Mater. Struct., 18 (3), pp. 363–370.

Huang, Y. J., and Stein, E., 1996, “Shakedown of a Cracked Body Consisting of Kinematic Hardening Materials,” Eng. Fract. Mech.

[CrossRef], 54 (1), pp. 107–112.

Belouchrani, M. A., and Weichert, D., 1999, “An Extension of the Static Shakedown Theorem to Inelastic Cracked Structures,” Int. J. Mech. Sci., 41 , pp. 163–177.

Tirosh, J., 2008, “Extended Fatigue Life by Shot-Peening Process Via Shakedown Analysis,” ASME J. Appl. Mech.

[CrossRef], 75 (1), p. 011005.

Gurson, A. L., 1977, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Flow Rules for Porous Ductile Media,” ASME J. Eng. Mater. Technol., 114 , pp. 2–15.

Tvergaard, V., 1981, “Influence of Voids on Shear Band Instabilities Under Plain Strain Conditions,” Int. J. Fract.

[CrossRef], 17 , pp. 389–407.

Tvergaard, V., 1981, “Ductile Fracture by Cavity Nucleation Between Larger Voids,” Int. J. Fract., 18 , pp. 237–251.

Southwell, R. V., and Gough, H. J., 1926, “On the Concentration of Stress in the Neighbourhood of a Small Spherical Flaw, and the Propagation of Fatigue Fracture in Statistically Isotropic Materials,” Philos. Mag., 1 , pp. 71–96.

Rice, J. R., and Tracey, D. M., 1969, “On the Ductile Enlargement of Voids in Triaxial Stress Field,” J. Mech. Phys. Solids

[CrossRef], 17 , pp. 201–217.

Sanderow, S., Spirko, J. R., and Fredhoff, T. G., 1997, “Fatigue Properties of P/M Materials,” "*Advances in Powder Metallurgy and Particulated Materials*", Metal Powder Industries Federation, Chicago, IL.

Katsushi, S., Shoji, H., Hironori, F., and Tohru, A., 1989, "*Fatigue Strength of Steels With Thin Hard Coating*", Elsevier, Amsterdam, The Netherlands.

Sonsino, C. M., and Ziese, J., 1993, “Fatigue Strength and Application of Cast Aluminum Alloys With Different Degrees of Porosity,” Int. J. Fatigue, 15 , pp. 75–84.

Suresh, S.1999, "*Fatigue of Materials*" (Solid State Science Series ), Cambridge University Press, Cambridge.

Becker, R., Smelser, R. E., and Richmond, O., 1989, “The Effect of Void Shape on the Development of Damage and Fracture in Plain Strain Tension,” J. Mech. Phys. Solids, 37 , pp. 111–129.