Föppl, A., 1907, "*Vorlesungen uder Technische Mechanic*", Vol. 5 , Teubner, Leipzig.

Karman, V., 1910, “Festigkeitsprobleme in Maschinenbau,” Encyklopadie Der Mathematischen Wissenschaften , Teubner, IV/4, pp. 311–385.

Way, S., 1934, “Bending of Circular Plates With Large Deflection,” Trans. ASME, 56 , pp. 627–633.

Hencky, H., 1915, “Uber den Spannungszustand in Kreisrunden Platten Mit,” Zeitschrift fur Mathematik und Physik, 63 , pp. 311–317.

Reissner, E., 1948, “Note on Membrane Theory of Shells of Revolution,” J. Math. Phys., 26 , pp. 290–293.

Reissner, E., 1950, “On Axisymmetrical Deformation of Thin Shells of Revolution,” Proc. Symp. Appl. Math., 3 , pp. 27–52.

Weinitschke, H., 1980, “On Axisymmetric Deformations of Nonlinear Elastic Membranes,” Mechanics Today , S.Nemat-Nasser, ed., Pergamon, Oxford, pp. 523–541.

Dickey, R. W., 1983, “The Nonlinear Circular Membrane Under a Vertical Force,” Q. Appl. Math., 41 , pp. 331–338.

Dickey, R. W., 1967, “The Plane Circular Elastic Surface Under Normal Pressure,” Arch. Ration. Mech. Anal., 26 , pp. 219–236.

Weinitschke, H., 1987, “On Finite Displacements of Circular Elastic Membranes,” Math. Methods Appl. Sci., 9 , pp. 76–98.

Callegari, A. J., and Reiss, E. L., 1968, “Non-Linear Boundary Value Problems for the Circular Membrane,” Arch. Ration. Mech. Anal., 31 , pp. 390–400.

Kelkar, A., Elber, W., and Raju, I. S., 1985, “Large Deflections of Circular Isotropic Membranes Subjected to Arbitrary Axisymmetric Loading,” Comput. Struct., 21 , pp. 413–421.

Grabmüller, H., and Novak, E., 1987, “Nonlinear Boundary Value Problems for the Annular Membranes: A Note on Uniqueness of Positive Solutions,” J. Elast., 17 , pp. 279–284.

Schwerin, E., 1929, “Uber Spannungen und Formanderungen Kreisringformige Membranen,” Z. Angew. Math. Mech., 12 , pp. 651–659.

Yang, W., and Hsu, K. H., 1971, “Indentation of a Circular Membrane,” ASME J. Appl. Mech., 38 , pp. 227–230.

Chen, D., and Cheng, S., 1996, “Non-Linear Analysis of Prestretched Circular Membrane and a Modified Iteration Technique,” Int. J. Solids Struct., 33 , pp. 545–553.

Dienes, J. K., and Miles, J. W., 1977, “A Membrane Model for the Response of Thin Plates to Ballistic Impact,” J. Mech. Phys. Solids, 25 , pp. 237–256.

Wierzbicki, T., and Nurick, G. N., 1996, “Large Deflection of Thin Plates Under Localized Impulsive Loading,” Int. J. Impact Eng., 18 , pp. 899–918.

Mori, D., David, G., Humphrey, J. D., and Moores, J. E., 2005, “Stress Distribution in a Circular Membrane With a Central Fixation,” ASME J. Biomech. Eng.

[CrossRef], 127 , pp. 549–553.

David, G., and Humphrey, J., 2004, “Redistribution of Stress Due to a Circular Hole in a Nonlinear Anisotropic Membrane,” J. Biomech.

[CrossRef], 37 , pp. 1197–1203.

Scott, O. N., Begley, M. R., Komaragiri, U., and Mackin, T. J., 2004, “Indentation of Freestanding Circular Elastomer Films Using Spherical Indenters,” Acta Mater.

[CrossRef], 52 , pp. 4877–4885.

Pelesko, J., and Chen, X., 2003, “Electrostatic Deflections of Circular Elastic Membranes,” J. Electrost., 57 , pp. 1–12.

Begley, M. R., and Mackin, T. J., 2004, “Spherical Indentation of Freestanding Circular Thin Films in the Membrane Regime,” J. Mech. Phys. Solids

[CrossRef], 52 , pp. 2005–2023.

Tuan, C. Y., 1998, “Ponding on Circular Membranes,” Int. J. Solids Struct., 35 , pp. 269–283.

Beck, A., and Grabmüller, H., 1992, “Wrinkle-Free Solutions of Circular Membrane Problems,” Z. Angew. Math. Phys., 43 , pp. 481–504.

Callegari, A. J., Reiss, E. L., and Keller, H. B., 1971, “Membrane Buckling: A Study of Solution Multiplicity,” Commun. Pure Appl. Math.

[CrossRef], 24 , pp. 499–516.

MATLAB , 2006, The MathWorks Inc.