Hurmuzlu, Y., Génot, F., and Brogliato, B., 2004, “Modeling, Stability and Control of Biped Robots A General Framework,” Automatica

[CrossRef], 40 , pp. 1647–1664.

Pfeiffer, F., and Glocker, C., 1996, "*Multibody Dynamics With Unilateral Contacts*", Wiley, New York.

Stronge, W. J., 2000, "*Impact Mechanics*", Cambridge University Press, Cambridge.

Brogliato, B., 2003, “Some Perspectives on the Analysis and Control of Complementarity Systems,” IEEE Trans. Autom. Control

[CrossRef], 48 (6), pp. 918–935.

Brogliato, B., 1999, "*Nonsmooth Mechanics*", 2nd ed., Springer, London.

Painlevé, P., 1895, “Sur les Lois du Ffrottement de Glissement,” C. R. Hebd. Seances Acad. Sci., 121 , pp. 112–115.

Klein, F., 1909, “Zu Painlevés Kritik der Coulombschen Reibungsgesetze,” Zeit. Math. Physik, 58 , pp. 186–191.

Lötstedt, P., 1981, “Coulomb Friction in Two-Dimensional Rigid-Body Systems,” Z. Angew. Math. Mech.

[CrossRef], 61 , pp. 605–615.

Lötstedt, P., 1982, “Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints,” SIAM J. Appl. Math.

[CrossRef], 42 , pp. 281–296.

Erdmann, M., 1994, “On a Representation of Friction in Conguration Space,” Int. J. Robot. Res.

[CrossRef], 13 (3), pp. 240–271.

Moreau, J. J., 1988, “Unilateral Contact and Dry Friction in Finite Freedom Dynamics,” "*Nonsmooth Mechanics and Applications*", Springer-Verlag, Vienna, pp. 1–82.

Wang, Y., and Mason, M. T., 1992, “Two-Dimensional Rigid-Body Collisions With Friction,” J. Appl. Mech.

[CrossRef], 59 , pp. 635–642.

Baraff, D., 1991, “Coping With Friction for Non-Penetrating Rigid Body Simulation,” Comput. Graph.

[CrossRef], 25 (4), pp. 31–40.

Payr, M., and Glocker, C., 2005, “Oblique Frictional Impact of a Bar, Analysis and Comparison of Different Impact Laws,” Nonlinear Dyn.

[CrossRef], 41 , pp. 361–383.

Leine, R. I., Brogliato, B., and Nijmeijer, H., 2002, “Periodic Motion and Bifurcations Induced by the Painlevé Paradox,” Eur. J. Mech. A/Solids

[CrossRef], 21 , pp. 869–896.

Génot, F., and Brogliato, B., 1999, “New Results on Painlevé Paradoxes,” Eur. J. Mech. A/Solids

[CrossRef], 18 , pp. 653–677.

Ivanov, A. P., 1997, “The Problem of Constrainted Impact,” J. Appl. Math. Mech.

[CrossRef], 61 (3), pp. 341–253.

Ivanov, A. P., 2003, “Singularities in the Dynamics of Systems With Non-Ideal Constraints,” J. Appl. Math. Mech.

[CrossRef], 67 , pp. 185–192.

Brach, R. M., 1997, “Impact Coefficients and Tangential Impacts,” Trans. ASME, J. Appl. Mech.

[CrossRef], 64 , pp. 1014–1016.

Zhao, Z., Chen, B., and Liu, C., 2004, “Impact Model Resolution on Painlevé’s Paradox,” Acta Mech. Sin., 20 (6), pp. 659–660.

Zhao, Z., Liu, C., and Chen, B., 2006, “The Numerical Method for Three-Dimensional Impact With Friction of Multi-Rigid-Body System,” Sci. China, Ser. G

[CrossRef], 49 (1), pp. 102–118.

Peng, S., Kraus, P., Kumar, V., and Dupont, P., 2001, “Analysis of Rigid-Body Dynamic Models for Simulation of Systems With Frictional Contacts,” J. Appl. Mech.

[CrossRef], 68 , pp. 118–128.

Grigoryan, S. S., 2001, “The Solution to the Painlevé Paradox for Dry Friction,” Dokl. Phys.

[CrossRef], 46 (7), pp. 499–503.

Stewart, D. E., 2000, “Rigid-Body Dynamics With Friction and Impact,” SIAM Rev.

[CrossRef], 42 (1), pp. 3–39.

Stewart, D. E., 1998, “Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painleve’s Problem,” Arch. Ration. Mech. Anal.

[CrossRef], 145 , pp. 215–260.

Wilms, E. V., and Cohen, H., 1997, “The Occurrence of Painlevé’s Paradox in the Motion of a Rotating Shaft,” J. Appl. Mech.

[CrossRef], 64 , pp. 1008–1010.

Ibrahim, R. A., 1994, “Friction-Induced Vibration, Chatter, Sequeal and Chaos. Part ii, Dynamics and Modeling,” Appl. Mech. Rev., 47 (7), pp. 227–253.

Liu, C., Zhao, Z., and Chen, B., 2007, “The Bouncing Motion Appearing in a Robotic System With Unilateral Constraint,” Nonlinear Dyn.

[CrossRef], 49 (1–2), pp. 217–232.

Zhao, Z., Liu, C., and Chen, B., 2008, “The Painlevé Paradox Studied at a 3D Slender Rod,” Multibody Syst. Dyn.

[CrossRef], 19 (4), pp. 323–343.

Anitescu, M., and Potra, F. A., 2002, “Time-Stepping Schemes for Stiff Multi-Rigid-Body Dynamics With Contact and Friction,” Int. J. Numer. Methods Eng.

[CrossRef], 55 (7), pp. 753–784.

Anitescu, M., Potra, F. A., and Stewart, D., 1999, “Time-Stepping for Three-Dimensional Rigid-Body Dynamics,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 177 , pp. 183–197.

Kane, T. R., and Levinson, D. A., 1985, "*Dynamics: Theory and Applications*", McGraw-Hill, New York.

Stronge, W. J., 1994, “Swerve During Three-Dimensional Impact of Rough Rigid Bodies,” Trans. ASME, J. Appl. Mech.

[CrossRef], 61 , pp. 605–611.

Keller, J. B., 1986, “Impact With Friction,” Trans. ASME, J. Appl. Mech., 53 , pp. 1–4.

Bhatt, V., and Koechling, J., 1995, “Partitioning the Parameter Space According to Different Behaviors During Three-Dimensional Impacts,” Trans. ASME, J. Appl. Mech.

[CrossRef], 62 , pp. 740–746.

Batlle, J. A., 1996, “Rough Balanced Collisions,” Trans. ASME, J. Appl. Mech.

[CrossRef], 63 , pp. 168–172.

Darboux, G., 1880, “Etude Géométrique sur les Percussions et le Choc des Corps,” Bulletin des Sciences Mathématiques et Astronomiques, deuxième série, 4 , pp. 126–160.

Moreau, J. J., 1963, “Les Liaisons Unilatérales rt le Principe de Gauss,” Acad. Sci., Paris, C. R., 256 , pp. 871–874.

Moreau, J. J., 1971, "*Mécanique Classique*", Masson, Paris, Tome II.

Brogliato, B., ten Dam, A. A., Paoli, L., Génot, F., and Abadie, M., 2002, “Numerical Simulation of Finite Dimensional Multibody Nonsmooth Dynamical Systems,” Appl. Mech. Rev.

[CrossRef], 55 (2), pp. 107–150.